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SCR Framework:  
Accelerating Resilience and I/O  
for Supercomputing Applications   
1.	 PRODUCT/SERVICES CATEGORIES

A.	 Title

SCR Framework: Accelerating Resilience and I/O for Supercomputing Applications

B.	 Product Catagory

Software/Services 

2.	 R&D 100 PRODUCT/SERVICE DETAILS

A.	 Primary submitting organization 

Lawrence Livermore National Laboratory

B.	 Co-developing organizations 

Argonne National Laboratory

C.	 Product brand name

The Scalable Checkpoint/Restart Framework 2.0 (SCR)

D.	 Product Introduction 

This product was introduced to the market between January 1, 2018, and March 31, 2019.

This product is not subject to regulatory approval.
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E.	 Price in U.S. Dollars

Open source

F.	 Short description 

The Scalable Checkpoint/Restart Framework 2.0 (SCR) enables high performance computing simulations 
to take advantage of hierarchical storage systems, without complex code modifications. With SCR, 
scientific simulations’ input/output performance can be improved by orders of magnitude, with their 
results produced in significantly less time than they could be with traditional methods.

G.	 Type of institution represented

Government or independent lab/institute

H.	 Submitter’s relationship to product

Product developer

I.	 Photos

J.	 Video

https://youtu.be/_r6svl_eAns 

(Left to right)  
Bronis R. de Supinski, 
Kathryn Mohror,  
Tony Hutter,  
Elsa Gonsiorowski,  
Greg Kosinovsky,  
Cameron Stanavige,  
and Adam Moody.
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3.	 PRODUCT/SERVICE DESCRIPTION

	 A.	 What does the product or technology do? 

The Scalable Checkpoint/Restart Framework 2.0 (SCR) enables high performance computing (HPC) science 
applications to perform input/output (I/O) operations and manage resilience orders of magnitude faster 
than they could with traditional methods. Version 2.0 was released in March 2019, and SCR now includes 
I/O management support in addition to the resilience features that have supported HPC applications for 
about a decade. SCR utilizes fast storage tiers on HPC supercomputers to quickly cache application and 
resilience data so that applications can produce their results in less time. This is important because HPC 
applications simulate real-world phenomena that impact our daily lives. For example, the results of models 
that predict the behavior of hurricanes (see Figure 1) are used by policy makers to make important decisions 
such as where and when to evacuate. Scientific simulations can typically take hours, days, or even weeks 
to compute. Delays in getting the results of these simulations due to I/O slowdowns or failures can have 
catastrophic impacts, including the possible loss of human lives.

Figure 1: Output image from a simulation of Hurricane Sandy. The results of simulations like this are 
needed as quickly as possible to save lives and property. The new I/O management features in the Scalable 
Checkpoint/Restart Framework 2.0 (SCR) enable applications to output finer-grained results faster than ever 
before. (Courtesy of NASA: https://www.nas.nasa.gov/SC13/demos/demo21.html#prettyPhoto[pp_gal]/1/)



5

www.llnl.gov | info@llnl.gov | SCR FRAMEWORK 

LAWRENCE LIVERMORE NATIONAL LABORATORY | 2019 R&D 100 Award Entry

HPC and SCR

HPC, the applied use of supercomputers, has become critically important for industry and government 
R&D efforts, engineering applications, and scientific discovery, with wide-reaching applications, including 
product design and development (e.g., advances such as additive manufacturing), precision medicine, 
and modeling of complex systems (e.g., Earth’s climate). HPC has been cited as an essential component of 
national economic competitiveness and even national security, leading to initiatives such as the Department 
of Energy’s Exascale Computing Project as part of the National Strategic Computing Initiative in the United 
States, the Partnership for Advanced Computing in Europe, and substantial investments in HPC by Japan 
and China. Furthermore, systems research in HPC has been increasingly adopted by the general computing 
market (e.g., processors with higher numbers of compute cores and greater adoption of HPC programming 
technologies such as MPI and OpenMP).

Over time, HPC supercomputers have increased in computing power largely by increasing in scale (i.e., by 
increasing the node or processor core count). The larger scale enables scientists to simulate larger and 
more complex problems or to compute existing problems much faster. Unfortunately, the larger the scale 
of the HPC application run, the greater the challenges for I/O and resilience. With traditional methods, 
documented cases report applications losing as much as half their execution time to I/O operations 
and resilience—meaning it can take twice as long for the application to complete and deliver its results 
owing to the slowness of these operations. However, with SCR, I/O and resilience activities are managed 
efficiently and transparently so that users can get their time-critical results without prohibitive delays or 
significant code changes.

Why Is I/O Slow on HPC Systems?

Performing I/O operations to a parallel file system (a large, reliable, semipermanent storage space that 
is shared across all jobs running on a cluster and sometimes across several clusters in a compute center) 
on a supercomputer is expensive, in terms of time taken, at large scale, where a single output operation 
can take on the order of tens of minutes (Ross et al. 2006, Iskra et al. 2008), and some input operations 
have been reported to take on the order of hours (Frings et al. 2013). It is important to note that during 
I/O operations performed in the traditional way without SCR, HPC applications are blocked waiting on 
the I/O operations to complete—which means no computational progress is made toward computing the 
solution. Furthermore, the current trend is that computational capabilities of large-scale supercomputers 
increase more quickly than I/O capabilities, so the I/O performance promises to get worse instead of 
better with new supercomputers. 
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Why Is Resilience Challenging on HPC Systems?

Although supercomputers are made of high-quality components, the systems become less reliable at 
larger scales simply because there is a higher probability that any of the larger number of components 
could malfunction or outright fail at any time. Long-running scientific applications typically encounter mean 
times between failures on the order of hours owing to hardware or software breakdowns (Schroeder et al. 
2006, Gupta et al. 2017) and soft errors (Michalak et al. 2005). The common way for applications to tolerate 
these failures is with checkpoint/restart, a process by which the application periodically saves its state to 
checkpoint files on reliable storage, typically a parallel file system. Should a failure occur, the application can 
restart from a prior state by reading a checkpoint file. 

Unfortunately, although checkpoint/restart is a tried-and-true approach to resilience on HPC systems, 
checkpointing operations performed in the traditional way without SCR suffer from the same I/O 
bottlenecks as all other I/O operations, and applications can spend tens of minutes or more blocked, 
waiting on I/O operations to complete during each checkpoint cycle. The impact of this is significant loss of 
computing time and delay in producing results. For example, if an application produces output every hour 
that takes 10 minutes to complete when writing to the parallel file system alone, in a 24-hour allocation 
the application will have lost 4 hours due to I/O operations. Additionally, restarting is a manual and time-
consuming process without SCR. When a failure occurs, the application stops and the resource manager 
removes the application from its reserved allocation. That means that the application user must frequently 
check the application’s progress to see whether a failure has occurred; if one has, the user must manually 
resubmit the job in the resource manager queue to restart it, with hours or even days passing before the 
run starts again.

How Does SCR Help with I/O Bottlenecks and Resilience?

SCR addresses the problems of I/O bottlenecks and resilience in HPC applications by utilizing fast, 
intermediate levels of storage on HPC systems in addition to the traditional parallel file system and 
providing a robust and full-featured checkpoint/restart scripting infrastructure to aid in failure recovery. The 
utilization of intermediate levels of storage by SCR enables applications to achieve high-performance I/O 
without the need for complex and non-portable code changes. SCR’s scripting infrastructure automatically 
manages many of the manual and time-consuming tasks required by HPC users in monitoring and restarting 
jobs in the event of failures. We show the major features of SCR in Figure 2.
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The intermediate levels of storage SCR utilizes are a relatively new addition to HPC systems and can consist 
of main memory on the compute nodes (RAM disk) or solid-state drives (SSDs) located on the compute 
nodes or possibly on I/O nodes (sometimes called “burst buffers”), or any other type of storage that might 
exist on the system. These intermediate levels of storage provide temporary locations that can be used to 
mitigate high I/O overhead because they are not shared across the whole supercomputer and suffer from 
little to no contention compared to the parallel file system. 

While intermediate levels of storage represent an incredible performance opportunity, they are very 
challenging for applications to utilize directly. This challenge comes primarily from the fact that every 
HPC system has a unique storage hierarchy composed of different storage devices with different abstract 
programming interfaces (APIs) for moving data between storage levels. All these factors mean that for an 
application to achieve high-performance I/O on hierarchical storage, the developer must undertake a huge 
system-specific coding effort, which could result in fragile and non-portable code. However, if an application 
is integrated with SCR, SCR transparently manages the application’s data and checkpoints on differing 
storage hierarchies without any application code changes. 

The checkpoint/restart scripting infrastructure manages all aspects of resilience for application users, 
including checking compute node health, detecting application hangs or failures, and restarting the 
application when needed. These features can improve the resilience performance of HPC applications by 
orders of magnitude. Additionally, SCR removes the need for application users to frequently check their 
application runs to ensure they have not failed and to manually restart the runs if they do fail. 

Figure 2: SCR provides important features for enabling 
high performance computing (HPC) applications 
to use hierarchical storage systems effectively. It 
transparently manages application data on complex 
storage hierarchies for portable HPC applications. 
SCR also handles both general application data and 
checkpoint data using scalable data management 
strategies. The full-featured checkpoint/restart 
support in SCR greatly eases the burden on users of 
monitoring and restarting applications. SCR is highly 
portable and production-level software that runs on a 
variety of systems and storage hierarchies. Finally, the 
SCR abstract programming interface integrates easily 
into HPC applications as a simple wrapper around 
existing input/output code.
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Figure 3: SCR’s input/output (I/O) techniques scale linearly with the number of compute nodes in the scientific 
application run, as we show for two different supercomputers, Atlas (left) and Lassen (right). In contrast, the 
parallel file system reaches its scaling limit at about 64 compute nodes. SCR’s I/O mechanisms are as much 
as 1,000× faster than the parallel file system alone, saving scientific applications valuable time in computing 
their results.

In Figure 3, we show the scaling performance of I/O operations using SCR. In the figure, Single, Partner, 
and XOR refer to protection schemes that SCR employs to protect data on intermediate storage. In each 
case, the techniques applied by SCR scale linearly with the number of compute nodes in the job and can 
outperform the parallel file system. We show results on two Lawrence Livermore National Laboratory 
supercomputers, Atlas and Lassen, where SCR’s mechanisms on temporary storage outperform the parallel 
file system when used alone by as much as 1,000× on Atlas and 300× on Lassen. In practice, SCR uses a 
combination of protection schemes in a single application run, and we have measured I/O improvement of 
as much as 234× in a real run of a laser–plasma interaction code.

What Is the Impact of SCR?

The first version of the Scalable Checkpoint/Restart Framework was in production use by HPC applications 
for more than a decade and supported a wide variety of HPC platforms, resource managers, and 
hierarchical storage designs. A new feature was added in the Scalable Checkpoint/Restart Framework 2.0 
(now known as SCR), which was released in March 2019; SCR now provides support for I/O management 
on hierarchical storage systems. This new functionality in SCR enables application users to output more 
detailed and frequent data from their application runs, which can result in a more comprehensive 
understanding of the scientific output. 
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SCR addresses the challenges of I/O management on hierarchical storage and resilience with three critical 
features: it (1) provides an easy-to-use API for applications to use hierarchical storage for I/O, (2) manages 
and protects users’ data on tiered storage with high performance, and (3) supports a full set of features 
to facilitate checkpoint/restart for HPC applications. The API is portable across systems and enables 
applications to take full advantage of hierarchical storage for both application and checkpoint data, with 
only minor code modifications.

	 B.	 How does the product operate?

SCR Architecture and Overview of Functionality

SCR consists of three major components that support high-performance I/O and resilience on hierarchical 
storage systems (see Figure 4). First, to achieve high portability, SCR is highly configurable via environment 
variables and configuration files. Second, the SCR library that is linked with an HPC application implements 
the SCR API and manages the complexity of storing and moving data through the storage hierarchy. Third, 
SCR provides full-featured checkpoint/restart support through a set of scripts that interact with the resource 
manager and computing environment.

Figure 4: SCR consists of a library that links with a high performance computing (HPC) application and a set of 
scripts that interact with the HPC resource manager. Additionally, SCR is highly configurable via environment 
variables or configuration files so that it is portable to different HPC storage hierarchies and so it meets the 
needs of the job currently running.
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The components of SCR work in harmony to support the efficient execution of large-scale HPC applications. 
In Figure 5, we show the major functionality of each of the components during an application run. SCR 
performs a large number of functions to help HPC applications run efficiently on supercomputers. In 
the figure, the two green circles represent user activities and the rest of the circles represent activities 
performed by SCR on behalf of the user: brown circles represent activities performed by the SCR scripting 
environment, and orange circles are performed by the SCR library linked into the simulation application 
(red circle). Light blue arrows represent activities that are performed before and after execution of the HPC 
simulation job. The dark blue arrows show activities that occur during the simulation application run.

Overall, SCR performs a large number of complex tasks for HPC users, including performing health checks 
of the computing environment, monitoring the progress of the scientific application, managing output data 
and checkpoint files with high performance, and making sure final data is transferred to the parallel file 
system. Without SCR, users would need to implement complicated, system- and application-specific code to 
support all the functionality that SCR manages.

Figure 5: SCR performs a large number of functions to help high performance computing (HPC) applications 
run efficiently on supercomputers. Green circles represent user activities; brown circles represent activities 
performed by the SCR scripting environment; and orange circles are performed by the SCR library linked 
into the simulation application (red circle). Light blue arrows represent activities that are performed before 
and after execution of the HPC simulation job. The dark blue arrows show activities that occur during the 
simulation application run.
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Support for Arbitrary Storage and Protection Levels

A key feature of SCR is that it is highly portable to a variety of HPC hierarchical storage systems because of 
its flexible configuration strategy. For example, for each storage device, system administrators can specify 
the size of the device, how many checkpoints should be stored on the device before an old one is deleted, 
and its failure characteristics. This information enables SCR to protect user data on temporary storage 
with high confidence. As another example, users can optionally specify the storage location to use as the 
first level of storage, the protection mechanisms to use at each level of storage, and how much time SCR 
should allow for draining the last checkpoint and data files to the parallel file system before the end of the 
job allocation. 

SCR also offers flexible and portable protection mechanisms for files stored on temporary storage 
locations. The mechanisms vary in cost (i.e., how much storage is required and how long it takes to 
complete the protection mechanism) and resilience (i.e., the kind of failures the mechanism protects 
against). As an example, the simplest, fastest, and least resilient mechanism is called Single, through 
which checkpoint or application data is stored on the first level of storage on the compute node, usually 
a RAM disk or SSD. This is fast but not very resilient because if a compute node fails, the checkpoint or 
application data is lost since there is no backup. Another example of a protection mechanism is Partner, 
where a copy of the application data or checkpoint is stored on a partner compute node. This has a higher 
cost because now two copies of each file are stored on the first level of storage and transferring the copy 
to the partner compute node takes time. Now, if a compute node is lost because of failure, there is a 
backup copy of the data on the partner compute node. Users can configure SCR to manage and protect 
their data on a variety of hierarchical storage systems with different devices and using an arbitrary (and 
configurable) number of protection levels.

Easy-to-Integrate API for Managing Application Data and Checkpoints

Another important feature of SCR is that the SCR API is easy for application developers to integrate into 
their existing I/O or checkpoint code. In Figure 6, we show an example of writing checkpoint data using 
pseudocode. The developer simply needs to add three API calls around the existing I/O code. The SCR 
start and complete API calls tell SCR when an output phase is started and completed. The flag “checkpoint” 
supplied to the SCR start routine indicates that the data to be written will be checkpoint data. The SCR route 
call replaces the original file name with a new file name, which enables SCR to direct the application to write 
to the first level of storage instead of to the parallel file system. To have SCR manage application data, the 
developer simply needs to specify “output” for the flag to the SCR start API call. SCR supports data sets that 
are both checkpoint data and application data if the user specifies both flags in the SCR start API call.
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Figure 6: The SCR abstract programming interface (API) is easy to integrate into complex applications 
because it is a simple wrapper around existing application input/output (I/O) code. In this example, we 
show pseudocode for a checkpointing function in an application. On the left is the original code, where 
the application opens a file called “filename,” writes data to it, then closes it. To use SCR to write data, the 
application developer simply needs to insert three API calls that wrap the existing I/O code. 

SCR Provides Full-Featured Support for Checkpoint/Restart

The final feature of SCR that we highlight here is the many complex tasks that SCR undertakes to support 
checkpoint/restart, including detecting and restarting from failures. To achieve this functionality, the SCR 
scripts are integrated with resource managers commonly found on high performance computing systems. 
The scripts compartmentalize resource manager–specific handling of common tasks. For example, the 
mechanism to detect a hung job varies across systems, so SCR abstracts this functionality within its scripts. 
SCR manages many tasks in support of checkpoint/restart, including maintaining a full history of checkpoints 
previously saved to the parallel file system and automatically reloading the most recent checkpoint or any 
other checkpoint as directed by the user at the start of each job; detecting and avoiding reloading corrupted 
checkpoints; monitoring the application and detecting failures or application hangs and automatically killing 
and restarting any problematic runs in the same allocation; and terminating the application before the end 
of the allocation with enough time to drain the last checkpoint and any output to the parallel file system.
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C.	 Product Comparison

SCR has several features that put it far above existing competitive products. Namely, it 
supports an arbitrary number of storage and protection levels—defined by users or system 
administrators—for application I/O, which provides flexibility for application characteristics and 
system design; requires little code modification to integrate into applications; has full-featured 
support for checkpoint/restart via integration with resource managers; produces small checkpoint 
sizes; and supports application I/O as well as checkpoint I/O. Additionally, it is of production 
quality and has been used in production application runs since 2007 and has been ported to a 
variety of systems. 

Here, we compare SCR to three state-of-the-art products that are the closest match to SCR with 
respect to functionality:

• The Fault Tolerance Interface (FTI): https://github.com/leobago/fti
• The Very Low Overhead Checkpointing System (VeloC): https://github.com/ECP-VeloC/VELOC
• Distributed MultiThreaded CheckPointing (DMTCP): http://dmtcp.sourceforge.net/

Arbitrary storage and protection levels: SCR supports an arbitrary number of storage and 
protection levels, using a simple configuration file. This means that SCR is highly portable to 
differing storage hierarchies and can easily take advantage of new or different storage hardware 
resources that are installed on high performance computing systems. In contrast, FTI and VeloC 
do not support an arbitrary number of levels but have a fixed number, which makes them less 
flexible for application users and limits system portability. DMTCP supports a single level of 
checkpointing (the parallel file system).

Low code modification requirement: The code modifications required by SCR are relatively low. 
To use SCR, applications simply need to insert wrapper calls around their existing checkpoint/
restart or I/O code. In our experience with applications over the years, the modifications needed 
to integrate SCR are relatively minor and can be done by a person who has little expertise with 
SCR. In contrast, FTI requires that application developers annotate every variable in the code that 
needs to be saved, which can be a significant undertaking for a large legacy code. VeloC has two 
interfaces: one that is similar to that of FTI and that requires marking every variable; and one that 
is similar to SCR that wraps existing checkpoint/restart code. The usage of the SCR-like API in VeloC 
is similar in complexity to using SCR, but VeloC is not yet production ready. DMTCP is a system-
level checkpointing system, which means that no application changes are required in order to 
obtain checkpoints.
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Full-featured checkpoint/restart support: SCR boasts sophisticated integration with the resource 
managers on high performance computing systems. The SCR scripting tools provide automatic restart of 
applications in the event of failure, provide a health check of resources like storage devices and compute 
nodes to make sure that application runs have the best chance of succeeding, and detect when the current 
allocation is nearing its end so they can automatically stop the application execution and drain the last 
checkpoint to the parallel file system so it is available for the next allocation. FTI does not have system 
integration with resource managers. The VeloC checkpointing system does have some integration with 
resource managers but is not as sophisticated as SCR, and VeloC is not yet a production-ready system. And 
while DMTCP has integrated with some resource managers to facilitate launching and restart, its integration 
is limited and it does not support advanced features such as health checks or automatic restart. 

Modest checkpoint sizes: SCR, FTI, and VeloC are application-level checkpointing libraries, which means 
that the data saved in checkpoints is only what is needed for restarting. Smaller checkpoints take less 
time and resources to store them and can be saved in fast tier storage like RAM disk. In contrast, system-
level checkpointing libraries like DMTCP save all system state needed for restart, which means that the 
checkpoints can be very large and take more resources for storage as well as have longer checkpoint and 
restart times. System-level checkpointing has the advantage of not requiring any code modifications at the 
expense of large checkpoint files and limited portability. Additionally, system-level checkpointing libraries 
are less portable because they require significant work to be integrated on different operating systems. 

Supports general I/O as well as checkpoint I/O: The Scalable Checkpoint/Restart Framework was updated 
to version 2.0 (now known as SCR) and released in March 2019, and it supports handling general data files with 
similar mechanisms as for handling checkpoint files. This means that users can employ the fast storage tiers of 
high performance computing systems for their large output files without needing to implement complex, non-
portable code to support a system’s storage hierarchy. The output files of an application will be automatically 
moved to the parallel file system asynchronously so the application can go back to computing its results. In 
contrast, no other checkpointing system supports the handling of general output. With the competition, users 
must write their output directly to the parallel file system or implement the complex code themselves. Further, 
if an output set is lost before it is copied to the parallel file system because of catastrophic system failure, SCR 
will ensure the application is restarted using the most recent checkpoint saved just before the output was 
written so that it will be generated again.
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Production quality and portable: SCR has been in production use for more than a decade and supports 
a variety of systems. SCR supports several resource manager configurations, including SLURM, MOAB, 
ALPS, and LSF. It supports several vendor-supplied burst buffer APIs, including Cray DataWarp and IBM 
BB API. Because it is an application-level checkpointing library, it does not need to be integrated with 
operating system features but is independent of operating systems unlike DMTCP. The other application-
level checkpointing libraries, FTI and VeloC, are not implemented at the same production level as SCR. FTI 
is a research prototype and supports Linux and Cray systems. VeloC, while targeted to support upcoming 
exascale high performance computing platforms, is still under development and is not at the same 
production level as SCR. VeloC currently supports Linux systems and BB API.

	 D.	 Comparison summary

Table 1: SCR boasts many features above the competition. Each row represents the features supported by SCR 
and tools that are similar to SCR. Beneath the features, we use a green check to indicate “full support,” a yellow 
check to indicate “partial support,” and a red cross to indicate “no support.”

System Features Production 
quality

Portability

Number of 
checkpoint 
levels 
supported

Code 
modifications 
required

Integration with 
system resources

Checkpoint 
size

I/O 
management

SCR
  
(Arbitrary)

 
(Low; requires 
wrappers around 
existing code)

  
(Resource manager 
integration: LSF, 
SLURM, ALPS)

  
(Saves only 
what is 
needed by the 
application)

  
(Can manage 
general output 
files)

  
(In production 
use since 
2007)

 
(Supports 
Linux, Cray)

Fault Tolerance 
Interface (FTI)   

(Supports 4 
storage levels)

  
(Requires 
marking all 
variables)

  
(Does not provide 
system integration)

  
(Saves only 
what is 
needed by the 
application)

  
(Supports only 
checkpoint 
output)

  
(Limited use in 
production)

 
(Supports 
Linux, Cray)

VeloC
  

(Supports 3 
storage levels)

  
(Low; requires 
wrappers around 
existing code)

  
(Resource manager 
integration: LSF, 
SLURM)

  
(Saves only 
what is 
needed by the 
application)

  
(Supports only 
checkpoint 
output)

  
(Still in early 
development)

 
(Supports
Linux) 

DMTCP
  

(Single-level 
support)

  
(No code 
modifications)

  
(Resource manager 
integration: SLURM, 
Torque)

  
(Saves all 
needed system 
state)

  
(Supports only 
checkpoint 
output)

  
(In production 
use since 
2004)

 
(Supports 
Linux)
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	 E.	 Limitations 

• Does not support shared files written by applications [can be integrated with 
  external software products for this support (e.g., Unify File System)]

• Assumes a globally coordinated checkpointing model that is common in high  
  performance computing applications

• Requires some code modifications to use

• Requires some system knowledge to install [but can be done by a 
  knowledgeable person (system administrator) for all users]

4.	 SUMMARY 

The Scalable Checkpoint/Restart Framework 2.0 (SCR) enables high performance computing (HPC) 
simulations to take advantage of hierarchical storage systems, without complex code modifications. 
Version 2.0 was released in March 2019, and SCR now includes input/output (I/O) management support 
in addition to the resilience features that have supported HPC applications for about a decade. SCR 
utilizes fast storage tiers on HPC supercomputers to quickly cache application and resilience data so 
that applications can perform I/O operations orders of magnitude more quickly than they could with 
traditional methods and produce their results in less time. SCR has several features that support I/O and 
resilience for HPC applications that put it far above existing competitive products, including requiring 
few code modifications, providing full-featured support for checkpoint/restart, and managing general 
application data in addition to checkpoint data. The lightweight data management strategies employed 
by SCR are as much as 1,000× faster than the parallel file system alone and have been demonstrated to 
improve the I/O performance of large-scale production application by 234×.
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