Lawrence Livermore Contact
National Laboratory Dong H. Ahn

7000 East Avenue
Livermore CA 94550

A Fully Hierarchical
Workload Manager
for Supercomputin

Workflows

Prepared for:

2021 R&D 100
Award Entry

9.0 Il Lawrence Livermore
National Laboratory

LLNL-MI-822175
Prepared by LLNL under Contract DE-AC52-07NA27344.

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees
makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use
would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

2 ¢

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

Flux:
A Fully Hierarchical Workload Manager
for Supercomputing Workflows

1. PRODUCT/SERVICES CATEGORIES

A. Title

Flux: A Fully Hierarchical Workload Manager for Supercomputing Workflows

B. Product category

Software/Services | Special Recognition: Battling COVID-19

2. R&D 100 PRODUCT/SERVICE DETAILS

A. Primary submitting organization

Lawrence Livermore National Laboratory

B. Co-developing organization

University of Tennessee, Knoxville

C. Product brand name

Flux: Next-Generation Workload Management Software Framework

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

http://www.llnl.gov
mailto:info@llnl.gov

2 &

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

D. Productintroduction

This product was introduced to the market between January 1, 2020, and March 31, 2021.
This product is not subject to regulatory approval.

E. Price in U.S. Dollars

Free. Flux is open source and free to users.

F. Short description

Flux is a next-generation workload management software framework for
high-performance computing (HPC). It combines fully hierarchical resource
management with graph-based scheduling to improve the performance,
portability, flexibility, and manageability of scheduling and execution of complex
scientific workflows on HPC systems both at the system and user level.

G. Type of institution represented

Government or Independent Lab/Institute
University/Academic

H. Submitter’s relationship to product

Product developer

l. Photos
Flux product information, documentation, and other
u ‘ details are available at flux-framework.org.
J. Video

youtu.be/YIwt51dyXOE

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

http://www.llnl.gov
mailto:info@llnl.gov
https://flux-framework.org/

2 ¢

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

PRODUCT/SERVICE DESCRIPTION

A. What does the product or technology do?

Flux [1] is a next-generation workload management framework for supercomputers,
high-performance computing (HPC) clusters, servers in the cloud and laptops.

Flux manages massive numbers of processors, memory and other resources of

a computing system and assigns the work requested by users—also known as
jobs or workloads—to one or more available resources that complete the work, a
method known as scheduling. A job is typically expressed in a script that contains
a formal specification that requests resources, identifies applications (e.g., multi-
physics simulation software to run simultaneously across resources) along with
their input data and environment, and describes how to deliver the output data.
Modern science computing campaigns of sufficient complexity require many such
jobs that contain numerous interconnected computational and other tasks [2]. The
composition of numerous interdependent tasks that are spread across many jobs
as well as within each job is often referred to as a scientific or computing workflow,
distinguishing itself from a single job or workload.

Workload management software like Flux is critical for HPC users because it enables
efficient execution of user-level applications while simultaneously providing the HPC
facility with tools to maximize overall resource utilization [4]. HPC centers typically
provide a wide range of computing systems on which scientific applications perform
computations. The workload manager is responsible for efficiently delivering
compute cycles of these systems to multiple users while considering their diverse
resource types—e.g., compute racks and nodes, central and graphics processing
units (CPUs and GPUs), multi-tiered disk storage [5]. Figure 1 depicts how Flux
enables extreme-scale science.

However, two broad technical trends are making even the best-in-class products
significantly ineffective. The first trend is the evolution of workloads for HPC. With
the convergence of conventional HPC with new simulation, data analysis, machine
learning (ML), and artificial intelligence (Al) approaches, researchers are ushering

in new scientific discoveries, addressing our society’s most pressing challenges. But
this evolution also produces computing workflows—often comprising many distinct
tasks interacting with one another [6-9]—that are far more complex than traditional
products can sufficiently manage. Second, hardware vendors have steadily
introduced new resource types and constraints into HPC systems. Multi-tiered disk
storage, CPUs and GPUs, power efficiency advancements, and other hardware

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

http://www.llnl.gov
mailto:info@llnl.gov

2 ¢

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

components have gained traction in an era in which no single configuration reigns.
Many HPC architectures push the frontiers of compute power with hybrid (or
heterogeneous) combinations of processors [10], as in LLNL's Sierra supercomputer
[11] and other pre-exascale systems [12]." The workload management software
must manage and consider extremely heterogeneous computing resources and their
relationships for scheduling in order to realize a system'’s full potential.

Extreme-Scale Science Workloads

Job: % Job: workflow <§>
coordinated A with Tk

Job: high
t:::;?:&zt science GPU N specialized <E >ﬁ <T°*>
workflow L 1/0 éTas"> é\’i>

Fully hierarchical I
resource management

| Graph-based

scheduling specialization

]
ﬂ’itx

Rack Rack Rack Rack Rack

Node Node Node Node Node

CPUs GPUs CPUs GPUs CPUs GPUs CPUs GPUs CPUs GPUs
Node Node Node Node Node

CPUs GPUs CPUs GPUs CPUs GPUs CPUs GPUs CPUs GPUs
Node Node Node Node Node

CPUs GPUs CPUs GPUs CPUs GPUs CPUs GPUs CPUs GPUs
Node Node Node Node Node

CPUs GPUs CPUs GPUs CPUs GPUs CPUs GPUs CPUs GPUs

Heterogenous Compute and Other Resources

Figure 1: A complex HPC workflow—such as that for a drug discovery project—is composed of numerous
interconnected tasks that are allocated and assigned to diverse sets of resources (e.g., racks, nodes, CPUS,
GPUs, disk storage). Complex workflows can have varying resource requirements, interdependences, and
interaction patterns. With a growing trend toward higher complexity in modern workflows, HPC workload
managers must effectively enable the scheduling and execution of their tasks and direct them to run

on specific areas of the computing hardware. Flux provides a flexible and customizable framework for
workflows, both for HPC and the cloud [3]. With its unique features, such as fully hierarchical resource
management and graph-based scheduling, Flux enables extreme-scale science.

1. Exascale computers will be capable of at least a quintillion (10'8) calculations persecond.

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

http://www.llnl.gov
mailto:info@llnl.gov

2 ¢

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

Flux solves the key technical problems that emerge from these trends. It combines
fully hierarchical resource management with graph-based scheduling to improve the
performance, portability, flexibility, and manageability of the scheduling and execution
of both standard and complex scientific workflows on a wide range of HPC systems.

Fully Hierarchical Resource Management

Flux's fully hierarchical approach to resource management solves three primary
deficiencies of existing workload manager products [13-16] in enabling emerging
HPC workflows.

First, every product provides its own interface to workflows, each of which is
incompatible with the interface provided by the others. Every user of a workflow
must support every popular product, resulting in a multiplicative development effort.
Instead, Flux is capable of managing resources from almost anywhere, including

on bare metal resources, virtual machines in the cloud, HPC resources allocated

by another workload manager product, or even on a single laptop. In practice, this
means a workflow can create its own Flux instance to manage and to schedule
allocated resources as if they were its personal supercomputer. Workflows can avoid
having to support all of the various products and instead be programmed directly in
Flux, leveraging Flux's flexibility to provide portability across multiple systems.

Second, most products only provide minimal support for a workflow when it needs
to divide its allocated resources among smaller tasks—a common requirement of
today’'s computing workflows. Specifically, these products allow a user to execute
multiple jobs within a workflow, but if those jobs contain many tasks, these solutions
make the user pay the cost of scheduling and executing those tasks. The limited
support for arbitrary sub-division of work within a job adds much higher complexity
to users’ workflow software, slows its rate of development, and significantly limits its
robustness and execution performance.

By contrast, Flux can recursively create nested instances of itself, which in turn aid
in managing and scheduling a subset of the parent instance’s resources. This means
that large, complex workflows can easily and automatically sub-divide their jobs into
arbitrarily small tasks and still rely on the workload manager to schedule their work
efficiently and scalably. This capability greatly simplifies workflows, reducing their
code maintenance burden while also improving their performance.

Third, traditional solutions assume that tasks within a workflow are independent

and require little to no coordination or communication, creating an artificial
barrier between different tasks. Modern HPC workflows are increasingly coupling

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

http://www.llnl.gov
mailto:info@llnl.gov

2 &

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

simulations with in situ analyses or machine-learning and Al models, where the
results of a simulation are analyzed in real time in a separate task. In order for a task
to coordinate with another task within the same workflow (e.g., in situ analyses) it
must often resort to solutions with many side effects [6] to overcome this barrier.

With the innovation of Flux, jobs or tasks can connect to one another through
messaging overlays and datastores built directly into Flux—a feature that significantly
facilitates communication between jobs, breaking down the coordination barrier. In
addition, Flux lets users configure and monitor all jobs and instances related to their
workflow through the command-line and programming interfaces.

Figure 2 visually contrasts the complexity of the conventional and new or emerging
HPC paradigms in terms of how they utilize the resources allocated by the system'’s
workload manager. Nearly all existing products were designed when the workflows
were much simpler as shown in Figure 2a. Yet, these solutions have significant
difficulties with the emerging paradigm exemplified by Figure 2b, as well as with
connecting and coordinating jobs. These problems have led users to develop their
own ad hoc custom scheduling and resource management software or use tools that
perform only workflow management or only scheduling. However, accomplishing
sufficient job coordination without first-class support from a workload manager

like Flux has already proven to be difficult for either approach. Perhaps more
importantly, developing and maintaining ad hoc management software—especially

’

(a) Conventional paradigm (b) Emerging paradigm
Figure 2: An illustration of how the computing resources allocated to a job—as granted by the HPC
workload manager—differs between conventional and emerging scientific workflows. The notional x-axes
depict the compute node IDs allocated to the job and y-axes depict the IDs of computing resources in
each of these nodes. (a) The conventional paradigm requires only a single parallel simulation application
to run. (b) The emerging paradigm often requires many different types of tasks such as an ensemble of
molecular dynamics (MD) parallel simulation applications and another ensemble of docking simulation
applications along with in situ data analysis for the MD ensemble while these tasks are driven by an Al.

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

http://www.llnl.gov
mailto:info@llnl.gov

2 ¢

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

in this era of ever-evolving HPC hardware architectures—has quickly become
prohibitively expensive for supercomputing application teams.

Illlustrative Batch Script Examples

In a job script used by a simpler workflow, the user enters line 1 in Figure 3a to
submit a job script (line 2) to the system-level workload manager, requesting 256
compute nodes with 42 CPU cores each. This job script uses the allocated resources
under the conventional workflow paradigm (see Figure 2a), where the application
(i.e., sim.app) is executed across 256 compute nodes simultaneously, which then
work together to perform a computationally challenging problem such as a physics
simulation. More specifically, 42 copies of the sim.app software will be launched and
run on each of the 256 compute nodes, with one copy per CPU core.?

Figure 3b shows a job script with multiple tasks submitted on a heterogeneous HPC
system. Notice this script still remains simple with Flux, requiring only a few more
lines within the script. Similar to the previous example, at line 1, the user submits

a job script (through lines 2-5) with a request of 256 compute nodes each with 42
CPU cores—now also with 6 GPU resources (-g6). When this request is granted,
Flux automatically creates a child instance that manages the requested resources.
This job script then uses this instance as, in effect, a dedicated supercomputer and
submits a series of sub-batch scripts to it. At line 2, the command run.dock.sh is
again submitted, requesting a subset of the resources: 254 compute nodes with 24
CPU cores each, and no GPU resources. When this script is assigned to this subset,
it will again spin up an even smaller Flux instance and run many smaller docking
simulation applications under it. Similarly, at line 3, another sub-job script is submitted
to this instance with a request of 192 nodes each with 18 CPU-core and all of the
GPU resources—this time to execute a combined set of molecular dynamics (MD)
simulations along with data analytics applications. Line 4 initiates the third sub-job
script that runs Al applications to accelerate certain part of this computation with

a request of 64 nodes, again each with 18 CPU-core and all of the requested GPU
resources. At line 5, flux queue drain directs the top-level batch script to wait until
all three sub-jobs will complete. To accomplish this under other more traditional
products, each different workflow team either develops its own ad hoc software or
relies on a separate workflow management software. The efficiency, robustness,
and scalability of these software solutions vary wildly; the user of each workflow
would need to find and read the documentation, learn about new interfaces, then
install and deploy them. These examples can become even more complex. What if

2. -n specifies the number of copies to be launched. 10,752 is equal to 42 times 256 and therefore requests one process per
CPU core in the allocation.

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

http://www.llnl.gov
mailto:info@llnl.gov

2 ¢

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

the first job needed to connect to, and remotely submit tasks to, the second job?
However, with Flux, such communication and coordination between distinct batch
jobs can be easily accomplished using the same interfaces—in fact, the user needs
only make a single line change to the first script in order to submit a new task such
as an Al re-training task remotely into the Flux instance managing the second job:
e.g., inserting FLUX_URI=$(JobID_3b_AI.sh) flux mini batch retrain.shinto

a line between 2 and 3 of Figure 3a.? Based on this request, the first job uses the
connector built into the Flux instance of the second job, then channels the same Flux
commands to batch additional tasks or retrieve the status of the simulation run.

1 flux mini batch -N256 -n256 -c42 --wrap <<SCRIPT
2 flux mini run -N256 -nl1@752 sim.app (a) Conventional batch job script
3 SCRIPT

flux mini batch -N256 -n256 -c42 -g6 --wrap <<SCRIPT
flux mini batch -N252 -c24 run.dock.sh
flux mini batch -N192 -c18 -g6 run.MD.sh

1

2

3 . . .
4 flux mini batch -N64 -c12 -g6 run.AI.sh (b) Emerging batch job script
5

6

flux queue drain
SCRIPT

Figure 3: Compared to a conventional request (a), a job request for an emerging HPC workflow (b)
that divides up heterogeneous resources—10,752 CPU cores and 1,536 GPUs—into multiple tasks still
remains quite simple under Flux as each task is recursively managed by a child Flux instance and a
sub-job script.

Graph-Based Scheduling in Each Flux Instance

Workflow complexity quickly multiplies as distinct tasks of today’s scientific
workflows often have vastly different requirements in resource types (e.g., CPU

or GPU), duration of resource usage, and the relationships among resources.
Furthermore, to satisfy new resource demands made by ambitious scientific
studies and interdisciplinary research, HPC systems continue to increase in size

and integrate numerous types of processing elements situated locally and in the
cloud. As systems become larger and more diverse, they also become dynamic:
Hardware and software components can vary as they are disused, fail, or change
price. Managing complex combinations of resources that change over time requires
elevating resource relationships to an equal footing with resources themselves.

3. JobID_3b_AI.sh is a simple custom script that returns the job ID of the Flux instance running docking simulation
applications within the second job.

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

http://www.llnl.gov
mailto:info@llnl.gov

2 ¢

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

Current-generation workload management products are designed to manage static,
homogeneous HPC systems of the past, and their representation of resources
reflects this rigid thinking. Data management and storage structures designed for
efficiently representing compute-node-centric hardware resources do not encode
complex and changing relationships (e.g., power capping, network flows, location),
which makes them incapable of representing important components of newer
heterogeneous, dynamic systems. Flux overcomes the limitations of current products
by basing its resource representation (a model for characterizing resources) on a
directed graph—a powerful and expressive structure capable of dynamically defining
arbitrary resource types [17].

A directed graph is an abstract mathematical structure that associates objects
(vertices) via directed relationships (edges). For example, a social media network is
a directed graph; users are vertices, and communications between two users are
edges where direction can be defined by the user who first contacts the other. In
the case of Flux, a vertex can be a hardware resource (e.g., a CPU or compute node),
and an edge can indicate containment (i.e., a server contains a CPU). Figure 4 is a
visual representation of resource vertices and edges in a system with multi-tiered
disk storage that can be allocated as a global pool or with respect to the distance
(measured in number of edges) from other resources (e.g., a core). Matching a
resource request consists of descending into the graph and checking vertices for
suitability. Specifying different vertex and edge structure allows for tremendous
request flexibility: Selecting solid-state drives in Figure 4 via a path through a rack
(e.g., purple vertex racke to green vertex mt11_0) versus through mt12_o (orange
vertex near the graph center) permits priority based on proximity which is extremely
difficult for current-generation schedulers to replicate. The ability to allocate
resources in different ways based on paths is a unique capability of Flux, and one
that is necessary for the upcoming El Capitan exascale system at LLNL.

Using a directed graph as a foundation for resource representation provides Flux
with several key capabilities. The abstract model facilitates tremendous flexibility:
Any type of resources (e.g., hardware, software, power distribution units) can be a
vertex, and relationships between vertices are well-defined. Hierarchical scheduling
assumes an elegant form when based on a directed graph model. Each Flux instance
manages and schedules a subgraph (subset of the vertices and edges) of the resource
graph, where a child instance’s purview is a subgraph of its parent. Furthermore, a
tremendous number of algorithmic techniques and optimized software libraries exist
for performing fast operations on directed graphs. By basing its resource model on a
directed graph, Flux integrates the fruits of algorithmic development to perform many
required operations: e.g., quickly checking resource states, scheduling allocations,
adding/removing resources, and transforming representations.

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

http://www.llnl.gov
mailto:info@llnl.gov

2 &

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

lﬂz)
&
|

cluster

Figure 4: A directed graph of the multi-tiered storage test system’s vertices and edges shows
relationships between different resources such as disk storage nodes and GPU processors. Flux uses
this mathematical model to coordinate job allocation among resources, ultimately ensuring an HPC
workflow executes in the most resource-efficient way. The smaller graph on the right is an example of a
resource request that is matched in the resource graph.

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.linl.gov | info@lInl.gov

10

http://www.llnl.gov
mailto:info@llnl.gov

2 ¢

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

Scheduling operations are basic procedures in the context of directed graphs.

To request a resource allocation, users specify their needs in a common markup
language. Flux transforms the request into a directed graph, which it uses as

a template to find matching resources in the system resource model. Finding
resources amounts to checking resource vertices for availability, which Flux performs
with its highly optimized implementation of depth-first graph search. Depth-first
search is a ubiquitous technique for traversing each graph edge to the end (i.e.,
depth) before searching other edges.

The future of computing requires flexibility and dynamism, and the ability to change
the graph model in any way at any time is one of Flux's primary features. Adding or
removing resources is a straightforward matter of graph editing through well-known
techniques for inserting or deleting subgraphs. Unlike existing products, Flux permits
dynamic transformation of its resource model without manual reconfiguration and
restart of the scheduler, which enables automated changes in resource relationships
and addition or removal of resources. Mutability at-will is essential for supporting
dynamic systems, as the traditional approach of accounting for every possible type
of resource in each conceivable configuration is intractable. Complete flexibility of
expression coupled with true dynamism and efficient resource allocation allows Flux
to integrate and manage any resource representable by a directed graph at any time.

Flux Enables Extreme-Scale Science and Engineering

Spurred by the growing convergence of conventional HPC and new simulation, data
analysis, and ML/AIl techniques, the computational science community has been
embracing much more diverse workflow solutions than ever before. These trends
are already pushing the limits of the existing workload management products.
Flux has been able to provide innovative solutions. Furthermore, our development
team brought a co-design strategy to early scientific use cases, resulting in feature
enrichments and further performance and scalability improvements. With the
first-class workflow-enabling support of Flux, the software complexity of domain-
specific workflow management software was greatly reduced, often to just a thin
wrapper around Flux, and the overall end-to-end performance and scalability

of workflows were significantly improved. This section highlights some of the
representative scientific and engineering breakthroughs that Flux has enabled.

Cancer Research
The JDACS4C program—joint Design of Advanced Computing Solutions for Cancer—

is a partnership between the Department of Energy (DOE) and the National Cancer
Institute to advance cancer research using emerging exascale HPC capabilities. The

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

1

http://www.llnl.gov
mailto:info@llnl.gov

2 ¢

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

Pilot 2 project within JDACS4C seeks to develop effective HPC simulation methods
to uncover the detailed characterizations of the behavior of RAS proteins on cellular
membranes. The RAS protein family are small GTPase-signaling proteins involved
with the control of cell division and growth. Mutations leading to increased RAS
activity contribute to a wide range of cancers, and up to 30% of human cancers are
linked to mutations in the RAS gene family [19]. RAS proteins typically signal their
downstream effectors when bound to the lipid bilayer of cellular membranes, and
drugs that inhibit RAS activity do not exist yet.

Resolving RAS membrane dynamics and aggregation is a difficult task as macro-
scale length and time scales are needed; yet micro-scale molecule-level details are
also required to capture protein-protein and protein-lipid interactions. To resolve
RAS structure and dynamics on cellular membranes, the Pilot 2 team developed the
Multiscale Machine-Learned Modeling Infrastructure (MuMMI) [7], which can sample
data at the macro-scale with effective micro-scale resolution. This process is depicted
in Figure 5.

A macro model is simulated at the membrane level with 300 RAS molecules, which
is then coupled with an ML module that drives the sampling of patches, small
neighborhoods around an RAS molecule. These patches are then used to instantiate
and run corresponding MD simulations.

Figure 5: Addressing many important biological questions requires large length- and time-scales, yet at the
same time molecular level details. Flux scalably and portably enables the MuMMI workflow to simulate
protein-lipid dynamics for a T um x 1 um membrane subsection at near-atomistic resolution.

The MuMMI workflow reveals many workload management challenges for workload
managers on pre-exascale machines. These difficulties include needing to co-
schedule and to coordinate coupled simulation applications at different scales in a
highly sophisticated manner. Specifically, it co-schedules macro models with several
thousand MD simulations along with an ML module that prioritizes simulations

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

12

http://www.llnl.gov
mailto:info@llnl.gov
file:///Users/gines2/Desktop/R&D100/FLUX/images/l%20

CPU cores

GPUs

2 &

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

dynamically at a high rate and a data store to coordinate the data flow between
different tasks running on CPUs and GPUs. Figure 6 shows how the MuMMI workflow
used Flux to help schedule and execute various types of applications at large scale.

Owing to Flux, MuMMI's multi-layered, high-throughput simulation workflow could
efficiently and effectively proceed by thin domain-specific workflow-management
software tools, a combination of LLNL-developed software system called Maestro
[20] and an ML-based tool that is coupled closely to the macro simulations.
Specifically, the ML-based tool processes simulation frames and decomposes each
frame into hundreds of patches, one for each RAS. These patches are scored by its
pre-trained machine-learned model. The most “interesting” candidate patches—
ones with highest scores—are fed to micro-scale MD simulation tasks, which are
submitted, scheduled and executed by Flux.

/ Domain-specific manager

~flux

1 500 1000 1500 2040

Figure 6: The award-winning MuMMI project utilizes heterogeneous CPU/GPU resources to perform
different complex simulation and decomposition jobs simultaneously. Shown here are the number of
processors used for a typical MuMMI run of 2,040 nodes on LLNL's Sierra supercomputer. Flux and
complementary workflow software tools have a small footprint, taking up only a small fraction of the
compute resources allocated to a MuMMI run (e.g., a single CPU core on each node).

In a departure from the traditional products, Flux provides many knobs

to specialize and tune its scheduling policies so that it can deliver the best
performance for each different type of workload. In the case of MuMMI, Flux’s
job-queuing capability is first specialized to a first-come, first-served (FCFS) policy.

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

13

http://www.llnl.gov
mailto:info@llnl.gov

2 ¢

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

A typical facility-wide workload manager’s scheduling policy requires the scheduler
to look ahead at all later jobs to find backfilling opportunities when the current job
cannot be scheduled, which is computationally expensive and time consuming.
With Flux, the queue depth is easily set to 1; the scheduler only looks ahead to

the next job. This FCFS policy with a single-unit queue-depth parameter keeps the
scheduling performance overhead at bay—an optimization well-suited for MuMMI's
high-throughput workload. Considering only a few jobs when making a decision of
what to run would be inappropriate for center-wide scheduling that must maintain
fairness among many users.

Flux is further specialized to perform its scheduling at the granularity of CPU/GPU
level instead of at the exclusive node level—again a typical center-wide scheduling
policy—to fulfill MuMMI's complex scheduling requirements. Additionally, to
accelerate scheduling and reduce the number of waiting jobs maintained by a single
Flux instance, Flux's hierarchical policy is specialized to launch a child instance on
every compute node. The eight jobs related to the four micro-scale simulations
running on each node are managed through this local instance. Overall, running on
all of Sierra’s 4,000 nodes, Flux allows MuMMI to utilize 16,000 GPUs and 176,000
CPUs efficiently at peak, simultaneously running 16,000 micro-scale MD simulations.

In November 2019, the MuMMI team won the SC19 Best Paper Award?® for this
innovative computing workflow approach that enables a new genre of cancer
research. The research team has continued to adopt Flux's newer features, and
they successfully ran the next version of MuMM I on the full scale of the Summit
supercomputer at Oak Ridge National Laboratory (ORNL) in March 2021.

Combating the COVID-19 Pandemic

Near Real-Time Scenario Modeling

Amid the COVID-19 pandemic, scientists have demanded complex scientific
workflows to a greater degree than ever before. Combating the new global crisis has
required U.S. computing leaders at federal agencies and within the DOE complex to
partner with leading universities and technology firms worldwide. As a result, large
computing facilities have seen an unprecedented surge of diverse and complex
workflows. Many multi-disciplinary research teams have been successfully using Flux
to enable major COVID-19 research workflows.

4. Jobs belonging to multiple users must be considered to be reordered in accordance with the past resource usage of users
relative to their shares, and to run later jobs if resources cannot currently be utilized by high-priority jobs.

5. The annual Supercomputing Conference (SC) is one of the most prestigious conferences in the field of supercomputing.
Only one research paper is selected as the best paper of the year.

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

14

http://www.llnl.gov
mailto:info@llnl.gov

2 ¢

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

COVID-19 spread modeling is an important class of scientific computing workflows

as nations urgently need to predict the spread of this virus under various scenarios
and inform decision makers. For example, a collaboration among LLNL, Los Alamos
National Laboratory, and the National Energy Research Scientific Computing Center
(NERSC) in which a large workflow consisting of an ensemble of EpiCast epidemiology
simulations is employed to model COVID-19 spread patterns and to inform federal
agencies like FEMA of the prediction. As part of the National Virtual Biotechnology
Laboratory (NVBL), their workflow taps into U.S. census data to model scenarios such
as how the virus will spread if schools are open two days a week.

Flux is playing a central role in providing high job throughput performance and
portability required for urgent decision making. Flux’s fully hierarchical resource
management allows this class of workflows to run many modeling application tasks,
each with a different scenario, efficiently at once on a large resource allocation.

With strict deadline requirements, these workflows must also portably leverage
computing resources from multiple institutions including the world’s most powerful
supercomputers at ORNL, LLNL, and NERSC. Existing software tools (e.g., SLURM [13]
and IBM LSF [14]) fall short of meeting all of the project’s requirements—high job
throughput, co-scheduling ability, and portability between different HPC systems. Luc
Peterson, software architect of a main tool used for the NVBL team reported, “With
Flux, we can model one scenario with UQ [uncertainty quantification] for the entire
country in about five minutes on a few [Lassen supercomputer] nodes—that is, near
real-time feedback.” This allowed U.S. policy decision makers to be informed of the
results of COVID-19 spread modeling including confidence levels with no delay.

Fast ML-Based COVID-19 Antiviral Drug Design

In May 2020, a multidisciplinary LLNL team set out to develop a new highly scalable,
end-to-end antiviral drug design workflow that could expediently produce potential
COVID-19 drug molecules for further clinical testing. This team brought together
multiple scientific experts:

« LBANN [21] (Livermore Big Artificial Neural Network Toolkit) researchers
focused on developing a scalable ML technique to construct a high-quality ML
model using 1.6 billion chemical compounds.

« ATOM [22] (Accelerating Therapeutics for Opportunities in Medicine)
researchers coupled this ML model with a generative molecular design (GMD)
pipeline to increase the probability of creating new COVID-19 antiviral drug

molecules with desired properties (e.g., diversity, validity, efficacy, safety).

« ConveyorlLC [23] researchers focused on coupling the above with their HPC

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

15

http://www.llnl.gov
mailto:info@llnl.gov

2 ¢

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

simulations that evaluate the docking properties of the newly generated drug
candidate molecules—that is, searching for an appropriate ligand that both
energetically and geometrically fits the target protein’s binding site.

« Workflow infrastructure researchers devised workflow management
techniques to ensure the scalability of this newly envisioned coupled workflow.

The team quickly discovered that creating an end-to-end solution based on

existing components could present two workflow issues—and that Flux could
comprehensively solve them. First, the ConveyorLC docking simulation implements
its own ad hoc task scheduling on top of message passing interface (MPI)
functionality, which is not scalable. The team discovered that the scalability of this
scheme indeed led to a significant resource utilization loss starting at 50 nodes. At
200 nodes, the highest scale evaluated this scheduling scheme, resource utilization
had already dropped to 45.5%. The second workflow challenge was that the GMD
pipeline, a domain-specific workflow management tool, has never been scaled to a
few compute nodes and beyond. Taken together, the ideal solution must be capable
of utilizing large numbers of compute nodes by flexibly running many ConveyorLC
tasks simultaneously each at a small scale (25 nodes) but still exposing this ensemble
of tasks as a single unit to GMD to overcome its scalability.

Flux's fully hierarchical resource management has proven to be sufficiently scalable
and flexible to solve both of the project’s key workflow problems. For example,

a large Flux instance managed ConveyorLC docking simulations as an ensemble,
then submitted each docking simulation as sub-batch jobs running on their own
small Flux instance to the parent instance. Using this hierarchical scheme, the team
showed that docking achieved 98.98% resource utilization in the composite workflow
context on 2,950 nodes of LLNL's Quartz supercomputer.

Overall, Flux enabled the scalable end-to-end workflow architecture that is used for
massive ML training. This team’s massive training work [24] was nominated for a
special category of the 2020 ACM Gordon Bell Prize,® and was named one of the four
finalists. The team plans to submit the workflow-focused work to the same category
of the ACM Gordon Bell Prize in 2021.

6. Often called the Nobel Prize of supercomputing, the Association for Computing Machinery (ACM) Gordon Bell Prize is one
of the most prestigious awards that recognizes outstanding achievement in HPC applications.

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

16

http://www.llnl.gov
mailto:info@llnl.gov

2 ¢

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

Engineering & Design Optimization

Uncertainty Quantification (UQ); Verification & Validation (V&V)

UQ is the science of quantitative characterization and reduction of uncertainties

in both computational and real-world applications. Its goal is to determine the
likelihood of certain outcomes if some aspects of the system are not precisely
known. V&Y are independent procedures used together to check that a product,
service, or system meets requirements and specifications and that it fulfills its
intended purpose. In the context of HPC workflows, these methods often share a
common pattern: They must run a large ensemble of physics and other simulations
on a supercomputer.

The traditional approach is to write a simple script that iterates through the many
necessary job scripts and submits each as a job to the system workload manager.
However, this approach has several drawbacks. First, system workload managers
often impose limits on the number of concurrently running jobs that a single user
can have, so throughput will be low and the user will have to wait a long time for
their jobs to complete. Second, users with a large number of jobs will quickly be
inconvenienced by submitting and monitoring all of the jobs, resubmitting them if
they fail, and then running the post-processing script once they have all completed.

Domain-specific workflow management software tools such as LLNL's UQ Pipeline
(UQP) [25] offer an alternative approach. UQP’s main advantage is provisioning a
resource allocation consisting of N nodes much more quickly than provisioning N
resource allocations, each with one node, from the system workload manager. UQP
then subdivides the remaining allocated nodes into N uniform “slots.” Each slot
executes one of N ensemble simulations. Unfortunately, domain-specific tools such
as UQP require that the information contained in the batch-job submission script
(written for the system workload manager) be re-implemented into the particular
workflow management tool and subsequently submitted to the ad hoc scheduler
within these tools. As a consequence, users must learn and port their code to each
different tool whose performance and robustness vary widely. These redundant
implementations within each of these tools are becoming prohibitively expensive to
develop and support.

Flux recently allowed UQP, one of the most important tools for UQ and V&V
workflows at LLNL, to overcome its disadvantages. The team'’s design extended Flux’s
fully hierarchical resource management and graph-based scheduling capability to
provide the requisite job throughput performance without relying on their ad hoc
solution. Based on this unified approach, they created a domain-specific workflow
tool component called Themis as a thin wrapper around Flux. With Flux, Themis was

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

17

http://www.llnl.gov
mailto:info@llnl.gov

2 ¢

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

demonstrated to complete a 1-million-member ensemble simulation, which was not
possible before.

Additive Manufacturing (AM)

AM is revolutionizing the manufacturing industry, allowing construction of complex
machine and material parts not readily fabricated by traditional techniques. Although
the industry has had significant interest and investment in AM, the fraction of this
investment devoted to computer modeling and simulation is relatively small and
focused on reduced-order models for industry use instead of the development of
high-fidelity predictive models. As part of the DOE's Exascale Computing Project, the
Exascale Additive Manufacturing Project (ExaAM) [26] represents a unique opportunity
to use exascale computer simulations to enable the design of AM components with
location-specific properties and acceleration of performance certification. ExaAM aims
to incorporate microstructure evolution and the effects of microstructure within AM
process simulations directly into an end-to-end HPC workflow.

The ExaAM team expressed interest in Flux and met with us in September 2020

to co-design the project’s overall workflow using Flux. Flux's hierarchical resource
management capabilities were tested on a portion of the workflow called ExaConstit
to evaluate potential benefits. By November, the ExaAM team was able to integrate
Flux into ExaConstit and reported a 4x job throughput performance improvement with
simple scripting changes—namely, submitting multiple batch-job scripts into a Flux
instance on a large allocation instead of using the system’s native workload manager.
ExaAM team member Robert Carson noted, “The workflow change [to integrate Flux]
is surprisingly small. In my Python script that generates all of these things, | only had
to add about five additional lines for the Flux path.”

Large Al on HPC

Flux has enabled extremely large Al workflows for LLNL's Machine Learning

Strategic Initiative (MLSI) project. As part of LLNL's Laboratory Directed Research

and Development Strategic Initiative portfolio, MLSI aims to combine simulations
with experiments using ML to optimize the design of key devices used in National
Ignition Facility. Similar to MuMMI and UQ workflows, the MLSI ML workflow requires
extremely high job throughput, co-scheduling capabilities, and dynamism. To
overcome these workflow challenges, a new workflow tool called Merlin [27] was
developed under MLSI.

Merlin provides an adaptable, efficient Python-based workflow that runs an
ensemble of simulations and records the results while concurrently running ML on
the results as they become available. The ML model then helps steer the ensemble

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

18

http://www.llnl.gov
mailto:info@llnl.gov

2 ¢

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

of simulations as it improves (or learns) with more data. The workflow executes a
variety of tasks to generate and analyze the data. The first of these is defining the
ensemble of simulations. This ensemble consists of a set of samples spanning the
spatial domain needed for creating a unique set of data describing the domain. An
executable task will accept the sample set as input parameters and produce data for
the ML model. The simulation can range from a simple ordinary differential equation
to a massively parallel hydrodynamics simulation. These simulations may also be run
on many different platforms with different workload managers, where scheduling
and launching the simulations in a general manner becomes difficult.

The first version of the Merlin MPI parallel job launcher used a simple Python-

based subprocess call to map a set of MPI parameters (e.g., number of nodes and
CPU cores) onto the commands needed for launching under the system workload
manager such as SLURM or IBM LSF. A maintenance issue arose when each new
workload manager required a set of runtime parameters that do not map 1:1
between the various launch systems. Moreover, IBM LSF does not handle nested
launches where there is one subprocess call for the allocation and a subsequent

call for the simulation. Some parallel runs need CPU/GPU support, while others
require only CPU cores. This requirement puts the onus on the workload manager to
schedule resources for the various types of parallel jobs.

In Merlin, Flux solves both the nesting issue and co-scheduling issue through the
use of a single Flux instance. Jobs can be concurrently scheduled because the single
Flux instance tracks all available resources with a GPU/CPU-level scheduling policy.
Nesting is not an issue with this single instance. The initial Flux-Merlin integration
was designed and implemented on an LLNL Linux cluster. Porting it to other
platforms, such as Sierra and Lassen supercomputers, was straightforward. Overall,
the integration team was able to generate massive amounts of simulation data from
100 million short-running jobs, thanks to Flux.

Broad Applicability and Adoption

Because the workload manager is among the most critical software elements for
large supercomputers, computing centers must often undertake a multi-year,
phased effort to adopt a new system-level, multi-user workload manager to replace
their existing solutions on large HPC systems. Flux can be run in both multi-user and
single-user modes to facilitate a smoother, incremental adoption: Specifically, Flux's
user-level capability called single-user mode interoperates easily with other traditional
solutions and this has proven to be essential for enabling time-critical workflow

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

19

http://www.llnl.gov
mailto:info@llnl.gov

2 ¢

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

problems on the world's largest and most powerful supercomputers even before
multi-user mode is deployed.

Figures 3a and 3b provide simple examples. We first note that the first lines of
these scripts are nearly identical to that of traditional solutions. Exploiting this
property, Flux can easily be adapted and used with a computing center’s existing
system workload managers with just a few keystrokes. For example, Figure 7 shows
how Flux can enable the complex workflow in Figure 3b under SLURM, a traditional
HPC workload manager, with just a two-line change in commands. This feature

has proven to be critical in helping combat time-critical workflow problems such
as in COVID-19 research. Thanks to this easy-to-adapt feature, Flux has enabled
HPC users, research and industry collaborators, and computing centers to be able
to respond to the needs of emerging workflows without having to adopt the full
system-instance technology of Flux.

1 sbatch -N256 -n256 --wrap="\
2 srun -N256 -n256 flux start <SCRIPT in Figure 3b>

Figure 7: Enabling Flux under another workload manager like SLURM is as simple as executing this
two-line command.

Flux's adaptability to different use cases, along with being open source, has
spurred wide adoption outside of LLNL. Flux has users worldwide including our
collaborators in both U.S. and European academic institutions; U.S. national labs;
U.S. military and federal agencies; and prominent domestic and international
scientific computing and HPC centers like NERSC in California and RIKEN in Japan,
home of the top-ranked Fugaku supercomputer. Figure 8 shows the geological
distribution of these institutions.

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

20

http://www.llnl.gov
mailto:info@llnl.gov

&

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

Q
WASHINGTON
M o ®
Q NTan, NORTH DAKOTA A
o &
REg, N MINNESOTA i, o gz A
2 NEL poriRe
DAy WISCONSIN ¥, Eo) (USETTS PIRED
o SOUTH DAKOTA Q e W YORK st
7 NE o NGDOM NETH.
WYOMING A Q @\ w0 GERMANY
- @ 9 CoNNECTY BELGQ
A CZEC
O WA pnsYLVANY '
> NEVAp, 9 NEBRASKA ! N Q pwiEE 9 &
QQ s Q oHn1o Q _MARVLAR
“wo UTay c Q D o SWINZ Avst
o (3 /
. LORADO a ILLINOL \g‘s‘}m FRANCE SLO
NSAS v
SAN
o ° A MARINO
2 ViRGING ITALY
Y
2 KENTUCK Q
OURI ANDORRA VATICAN
.) MISS NORTH CAROLINA
7 ARIZoy Q TENNESSEE
4 OKLAHOMA S ouTH
S
NEw MEXICo ARK z CAROLINA TH
Q > EA
z
% ALABAMA pORGIA
= SOUTH
-
T E X A s = KOREA JAPAD
LOUISIANA 9 Q

Figure 8: Users and collaborators of Flux are quickly expanding around the world.

B. How does the product operate?

Fully Hierarchical Resource Management Techniques

Flux's innovative fully hierarchical resource management capabilities drastically
improve scalability and flexibility through a divide-and-conquer approach (Figure 9).
Jobs and resources are divided among the schedulers in the hierarchy and managed
in parallel. Figure 10 shows how this approach drastically increases the scalability of
Flux over traditional schedulers that rely on a single, centralized process.

Three distinct principles underpin Flux’s hierarchical design:

* Hierarchical Bounding Principle: A parent Flux instance grants job and
resource allocations to its children.

* Instance Effectiveness Principle: Each Flux instance can be configured

independently and is solely responsible for the most effective use of its HPC
resource set.

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

21

http://www.llnl.gov
mailto:info@llnl.gov

2 ¢

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

* Arbitrary Recursion Principle: The first two principles apply recursively from
the top of the resource hierarchy (e.g., the entire HPC center) down to any
arbitrarily small subset of resources.

Flux Instance

L
L
L/
L)

O
L)
_/ UALL
O an

L)
_/
0

Figure 9: As a fully hierarchical workload manager, any Flux instance can spawn child instances to aid
in scheduling, launching, and managing complex sequences of compute jobs. A top-level Flux instance
(parent) is created within a 4-node resource allocation, the top-level instance then spawns additional
levels of Flux instances (children), each of which manages a smaller subset of jobs and resources. The
hierarchy of Flux instances extends down until the lowest-level instances each manage a single core—a
maximal example of fully hierarchical capabilities.

Hierarchical bounding improves scalability in two ways. First, it reduces the number of
resources that each Flux instance must consider, which improves the performance of
each individual instance. Second, it enables Flux instances to delegate work to child
instances, spreading the load across many independent instances and ultimately
improving their collective performance.

Instance effectiveness enables the customization of Flux instances for specific
workflows. The top-level Flux instance may be a system-wide, multi-user workload
manager instance with expensive scheduling policies, but it can create a child single-
user instance for each new workflow which enables the workflows to customize the
scheduling and other policies to their exact needs. This customization includes not

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

22

http://www.llnl.gov
mailto:info@llnl.gov

Scheduler throughput (jobs/sec)

2 ¢

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

only the scheduling policies and configuration scheduling parameters, but also the
number of children that the Flux instance creates.

Arbitrary recursion amplifies the scalability and flexibility provided by the previous
two principles. It allows for the creation of the appropriate number of Flux
instances for each workflow. Specifically, this principle enables large ensemble
workflows to create more Flux instances and thus improve job throughput with
minimum performance overhead needed for parallelization. Flux instances within
a hierarchy can even be dynamically created and removed depending on how
workloads change over time.

600 Figure 10: For multiple runs on between 1 and
1,152 cores of LLNL's Quartz supercomputer,
three different configurations of schedulers are

%00 benchmarked on a 4,096-job workload. First, a
traditional workload manager (red) schedules the
4001 workload at the same rate regardless of the number
of cores. Second, two levels of Flux instances (blue),
300+ with the second level instances each managing 32
cores, schedules the workload 45x faster than the
2004 Scheduler hierarchy: traditional workload manager (red) and scales well

B 3-Level with the number of cores. Finally, three levels of

—A— 2-Level Flux instances (green), with each third-level instance
100+ —0— 1-Level managing a single core, maximizes throughput at
60x faster than traditional techniques (red) and
0- —@ ; *— = = scales excellently with the number of cores.
0 200 400 600 800 1000

Number of cores

Scalable Graph-Based Scheduling Techniques

Once instantiated, Flux effectively carries out many complicated operations,
ranging from monitoring the health of resources, to enqueuing submitted tasks,

to scheduling and executing these tasks. Flux uses a graph-based approach to
scheduling as described on pp. 8-11. Flux's scheduler component, called Fluxion, is
represented in Figure 11. During Flux instance initialization, Fluxion first populates
an in-memory resource graph store (A) comprising vertices that represent the HPC
system’s various compute resources and edges that represent the relationships
among those resources. The initialization process also includes the selection of the
graph resource’s representation granularity and traversal type if users decided to
use non-default. Once initialization is complete, Fluxion is ready to receive the jobs'
resource requests from Flux’s core framework.

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

23

http://www.llnl.gov
mailto:info@llnl.gov

2 ¢

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

Flux first constructs a job’s resource request in the form of an abstract resource
request graph (B). The abstract request graph generally specifies the job’s resource
requirements in terms of both node-local resources (e.g., amount of compute cores
and memory to be used) and higher level or even global resources (e.g., compute
racks, network switches, power, parallel filesystem bandwidth). The abstract request
graph then becomes the input for the selected graph traverser (A) to find its best-
matching resource vertices and edges. The traverser “walks” the concrete resource
graph store in this pre-defined walking order and matches the abstract request
graph to the concrete resource graph.

Fluxion scheduling process within Flux

Queueing Match
policy policy (C)
Match (B) Planner &
Mreaues o pruning
° Traversal type (A) Scheduler-driven filter filter (E)
‘ in-memory (concrete) graph store update algorithm (D)
o o

Y
Emit (F) ® / L4 L4 L d

ey éV 6\/é @ o ¢ o

Figure 11: Fluxion, Flux’s scheduler component, automatically performs multiple steps when a Flux
instance is initialized. See text for a description of each lettered process.

As shown at (C), the best-matching criteria is determined by the match policy within
Flux's traverser. The policy is invoked every time the traverser visits a vertex. The
policy then evaluates how well a given resource vertex matches with the abstract
request graph and scores it accordingly. Flux's resource model must also efficiently
keep track of the status changes of resources over time in order to support various
queuing and backfilling policies common to HPC job scheduling (e.g., EASY [28] and
conservative [29] backfilling policies). Thus, the model directly integrates a highly
efficient resource-time state tracking and search mechanism into every resource
vertex. This mechanism (and a simple abstraction) is called Planner (E) [18].

After judicious selection of the appropriate representation granularity for the
concrete resource graph—striking a balance between performance and scheduling
2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

24

http://www.llnl.gov
mailto:info@llnl.gov

2 ¢

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

effectiveness—the resulting graph can still be quite large when modeling high-

end systems. Thus, the Fluxion scheduler includes other scalability strategies in its
model, such as pruning filters (E). For example, pruning filters can be installed at
high-level resource vertices (e.g., compute racks) to track the amount of available
lower-level resources (e.g., compute cores) in aggregate, which reside somewhere

in the subgraph rooted at that vertex. Fluxion also introduces a novel scheduler-
driven filter update algorithm (D) that updates and maintains these filters

without incurring high performance overhead. This filter significantly improves
performance by pruning the required graph search. Finally, once Fluxion determines
the best matching resource subgraph, this is emitted as a selected resource set
representation at (F). Flux's core framework can then make use of this resource

set to contain, bind and execute the target program(s) within those resources. As
discussed on pp. 8-11, our graph-based techniques stray away from the traditional
workload managers, helping usher in the era of extreme resource heterogeneity [10]
for HPC. The existing solutions use rather simple, compute-node centric data model
and scheduling schemes.

User Interfaces

Existing workload manager products typically provide only a command-line interface
(CLI) as their primary user interface. Some of the more popular workload managers are
bolstered by community efforts to support application programming interfaces (APIs) so
that other software can more efficiently interoperate with them, but these community
efforts are ad hoc, poorly supported, and thus usually short-lived. On the other hand,
Flux provides both a CLI as well as first-class APl support for the common programming
languages C, C++, Python, and Lua. Work-in-progress support for the programming
languages Rust and Julia has also been added. These APIs enable developers from many
programming backgrounds to interoperate easily and efficiently with Flux. Furthermore,
because these interfaces are provided as a core part of Flux, users can rely on their
continued support.

Flux's Python support is particularly important due to the proliferation of Python-based
workflow management systems. Many of them leverage Flux’s Python API to directly
integrate with Flux, including Maestro [20], Themis [25] and GMD [22] as described on p. 16,
Radical Pilot [30], and Parsl [31]. As a workflow management system, integrating via an API
as opposed to a CLI is both significantly easier—accessing the functionality is a direct call

to Flux as opposed to an indirect call—and more performant—there is no need to create a
new program for the CLI command or to perform any string parsing of the CLI output.

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

25

http://www.llnl.gov
mailto:info@llnl.gov

2 ¢

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

Single-User Mode

A unique and novel feature of Flux is that it allows for both single-user and multi-
user modes. Most HPC users are familiar with the multi-user mode when interacting
with the workload manager. Similar to a traditional solution, in this mode, decisions
are made at the system-level, and requests from multiple users are honored through
individual allocations based on priorities, accounts, and well-known scheduling
policies such as EASY [28] and conservative [29] backfilling and fair sharing.
Authentication between users as well as exclusive access to resources are important
criteria in this mode. Here, the goal is to ensure that the resources from the entire
cluster are shared among users in a fair and equitable manner, that user requests
for allocations are met without starving any job, and while optimizing for high

node utilization and low fragmentation. Conventional workload managers do not
provide users with the comprehensive ability to manage resources within their own
allocation. Traditionally, users are assumed to rely on the policies set by the system
administrators within their allocation. The consequences of this limitation include
the emergence of ad hoc scripting; “glue” code (i.e., written solely for the purpose

of filling a gap or overcoming a limitation); and various workflow managers that
attempt to streamline the complexity of scientific applications that need coupling,
coordination, and dependency management, as discussed on pp. 5-8.

Flux provides a single-user mode, where users have the flexibility to manage
resources and tasks within their allocation. This allows users to set up their own
customized hierarchies as well as policies based on the graph-based resource
model. This also allows users to tune additional scheduling options such as queue
depths and throttling of jobs. For example, an ensemble-based workflow that
encompasses thousands of short-duration, single-core jobs can spin up a network
of nested Flux instances each with an FCFS policy, instead of relying on the system’s
default policy of FCFS plus backfilling, which may not be necessary for the user’s
workflow. Such a network of child Flux instances is also more scalable and fault
tolerant, as it can easily absorb the stream of thousands of incoming jobs without
becoming overwhelmed.

Similarly, for complex workflows with many dependencies and steps, users can set
up a customized, coordinated network of Flux instances to facilitate communication
between various tasks in the workflow in a scalable manner. Users could choose

to divide their node in a manner where some tasks run on the heterogeneous
components such as GPUs while other tasks of the application can utilize the CPUs,
thus leveraging co-scheduling techniques.

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

26

http://www.llnl.gov
mailto:info@llnl.gov

2 ¢

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

Flux's single-user mode enables such customization with ease and supports diverse
workflows and resources, which is not possible to accomplish with traditional
solutions. The single-user mode is a distinguishing feature of Flux that gives
enormous flexibility to the users, allowing them to derive maximal performance and
utilization within their allocation for their specific use case.

Multi-User Mode

Like traditional workload managers, Flux also provides a multi-user mode. In this
mode, Flux runs as a privileged account, accepts jobs from multiple users, sorts and
schedules the jobs based on user’s priorities, and finally executes each job as the
submitting user. Similar to other products, Flux includes an accounting component
to keep track of users’ resource usage relative to their priority and job prologue and
epilogue scripts that enable admins to customize Flux to their sites.

Unlike traditional solutions, Flux has three key architectural designs that make its
multi-user mode very secure. The first is which parts of Flux run as root—the highest
level of privilege on a computer. Typical workload managers run their entire software
as root, meaning that any security vulnerability in the solution can be used to easily
gain total control of the system. Flux breaks this mold with its Independent Minister
of Privileges (IMP), which is the only component of Flux that runs as root. Every

other Flux component runs as a dedicated system account with significantly fewer
privileges than root. The IMP represents less than 2% of the total lines of code in the
Flux project, making a security audit of Flux’s root-privileged code much easier and
exploiting flaws in Flux much harder.

The second key architectural difference between Flux and other products is that
every communication with and within Flux is encrypted. Encrypted communication
between users and the workload manager is particularly important in classified
computing, where national security information cannot be exposed to users
without need-to-know, and medical computing, where U.S. HIPAA laws require
that medical information not be exposed to other users. Flux is also designed to
take extra precautions with the user’s submitted job specifications, which are the
main input to Flux's IMP. Each job specification is cryptographically signed, and
before executing the job, Flux's IMP verifies the signature to ensure a forged job
submissions has not occurred. This additional level of validation cryptographically
ensures that users cannot impersonate other users, preventing leaks of classified
or sensitive information.

The third key architectural difference is Flux's modular design, which enables the
extensive use of plugins. No existing approach can provide a one-size-fits-all solution;
2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

27

http://www.llnl.gov
mailto:info@llnl.gov

2 ¢

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

each site will want to customize the workload manager to meet their specific needs,
adapt to their unique environments, and enforce their local policies. Flux provides
multiple points for site administrators to integrate with Flux via plugins. These
plugins include a job ingest plugin for rejecting jobs that do not adhere to local
policies, an accounting plugin to calculate each user’s fair share of the system based
on site-specific priorities, job-shell plugins that run as the user to apply site-local
customizations to the job environment before the job runs, and the aforementioned
prologue and epilogue scripts that run as root before and after the user’s job. The
combination of these plugins gives site administrators significantly more control to
customize Flux versus other products.

C. Product comparison

As described earlier, Flux is capable of operating at either the system level in multi-
user mode or the user level in single-user mode. This capability is unique to Flux, as
other technologies fall into one category or the other.

Multi-User Competitors

Flux's multi-user competitors can be broken down into centralized, limited
hierarchical, and decentralized workload managers. Centralized ones use a single,
global scheduler that maintains and tracks the full knowledge of jobs and resources
to make scheduling decisions. This model is simple and effective for moderate-size
clusters, making it the state of the practice in most cloud-based and HPC centers
today. Cloud workload managers (or often called container orchestration solutions)
such as Swarm [33] and Kubernetes [34] and HPC workload managers such as
SLURM [13], MOAB [16], IBM LSF [14], and PBSPro (OpenPBS) [15] are centralized.
The cloud products—Kubernetes in particular—can achieve high job throughput,
but they are incapable of efficient batch job scheduling and rely on overly simplistic
resource models, resulting in poor performance for HPC workloads. On the other
hand, centralized HPC solutions are capped at tens of jobs per second [35], provide
limited to no support for co-scheduling of heterogeneous tasks [36], have limited
APIs, and also rely on simple resource models. Both types of centralized workload
managers, by design, suffer from an inability to nest within or integrate with other
system workload managers. However, Flux is more flexible than centralized solutions
because it can scale to the largest systems and workloads, be adapted to different
types of system hardware and configurations, has more robust options, and does
not impose job throughput quotas.

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

28

http://www.llnl.gov
mailto:info@llnl.gov

2 ¢

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

Limited hierarchical workload managers have emerged predominantly in grid (i.e.,
non-cluster) and cloud computing. This model's fixed-depth hierarchy typically
consists of two statically configured levels of independent workload manager
frameworks stacked together, relying on custom-made interfaces to facilitate
interoperability. Example implementations include the cloud computing solutions
like Mesos [37] and YARN [38] as well as the grid solutions like Globus [39] and
HTCondor [40]. Efforts to achieve better scalability in HPC have resulted in this
model's implementation at some large HPC centers. For example, in the past LLNL
managed multiple clusters with a limited hierarchical workload manager that used
the MOAB grid meta-scheduler on top of several SLURM workload managers, each
of which managed a single cluster in the facility [41]. While this type of solution
increases scalability over centralized scheduling, it is ultimately limited by its shallow
(and therefore inflexible) hierarchy and the capabilities of the scheduling frameworks
used at the lowest levels. Compared to these solutions, Flux is fully hierarchical and
thus has no fixed-depth or artificial limits on its flexibility or scalability.

Decentralized workload management is a model studied in the academic literature,
but unlike centralized ones, it has not gained traction. To the best of our knowledge,
decentralized solutions are not in use in any HPC center’s production environment.
The cloud computing software like Sparrow [42] and HPC's SLURM++ [43] are
examples of decentralized schedulers. In decentralized workload management,
multiple workload manager instances each manage a disjointed subset of jobs

and resources, yet they are fully connected and can communicate with each other.
In this model, an instance communicates with other instances when performing
work “stealing” (i.e., scheduling jobs initially allocated to another instance) and
when allocating resources outside of its resource set (i.e., resources managed by
another workload management instance). Despite providing higher job throughput,
decentralized solutions suffer from many of the same problems as centralized ones.
First, they have little to no support for co-scheduling of heterogeneous tasks and
limited APIs. Second, these products commonly make assumptions about the types
of applications being run to improve performance.

For example, Sparrow assumes that a common computational framework, such as
Hadoop or Spark, is used by most of the jobs, limiting Sparrow's applicability to HPC
workloads [42]. In contrast, Flux's hierarchical communication among its instances
can scale to large systems, workloads and scheduler configurations, and it supports a
broad range of workloads—including both loud and HPC—better than decentralized
workload manager technologies can.

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

29

http://www.llnl.gov
mailto:info@llnl.gov

2 ¢

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

Single-User Competitors

Flux's single-user competitors can be divided into user-level runtimes and workflow
managers. User-level runtimes offload a majority of task ingestion, scheduling, and
launching from the batch job scheduler onto a user-level runtime. This means that
users have to manage all of their workload scheduling instead of the workload manager
managing it for them. These user-level runtimes are typically much simpler and less
sophisticated than Flux and the other multi-user workload managers described above,
but in exchange provide extremely high throughput. For example, CRAM provides no
support for scheduling or queueing (i.e., there can only be one task per processor and
once a task completes, the resources remain idle until all other tasks have completed),
tasks requiring GPUs, or an API to query the status of tasks, but it can launch ~1.5 million
tasks with an average job throughput of ~1,200 jobs per second [44]. Flux, in contrast,
does not allow resources to sit idle and slow the overall execution of the workflow, even
a workflow with 1.5 million tasks.

Workflow managers are designed to ease the composition and execution of complex
workflows on various computing infrastructures, including HPC, grid, and cloud
resources [45]. Example workflow managers include Pegasus [46], DAGMan [47],

and the UQP [25]. Workflows can be represented as a directed acyclic graph (DAG),

as is the case with Pegasus and DAGMan, or a parameter sweep, as is the case

with the UQP. Once users specify a workflow, the workflow manager resolves the
dependencies through the DAG, submits tasks to the various computing resources

and handles moving data between the dependent tasks. Workflow managers provide
an interface for users to track the status of their workflow in a portable fashion

across many types of computing infrastructures. Although a workflow manager

can improve the overall workflow throughput by taking advantage of multiple
independent computing resources (e.g., clusters), it does not improve the job
throughput or concurrent scheduling capabilities of any individual computing resource.
Additionally, to submit and manage jobs in a portable way across different HPC systems,
many workflow managers incur expensive side effects, such as the creation of millions
of job status files [48], which can cripple modern parallel filesystems. Flux enables
workflow managers to avoid these crippling side-effects with efficient, portable APIs for
submitting, tracking, and coordinating jobs.

Overall, many of these single-user technologies are not in competition with Flux but
instead are complementary to Flux. In fact, Flux has been integrated and leveraged by

many workflow systems, including UQP and Themis [25], Radical Pilot [30], Swift/T [49],
and Parsl [31], providing them with better scalability, usability, and portability.

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

30

http://www.llnl.gov
mailto:info@llnl.gov

&

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

D. Comparison Summary

Table 1: Comparison Matrix for Both Multi-User and Single-User Competitors

MULTI-USER MODE

Multi-user workload management ---------

Fully hierarchical resource management ----- N/A

Graph-based advanced resource scheduling Yes N/A N/A N/A N/A

Scheduling specialization Yes N/A N/A N/A N/A

Security: only a small isolated layer running in

privileged mode for tighten security e e e A
Modern command-line interface (CLI) design [16] Yes Ougjfed ou?ﬂ'ed Ougj'ed ou?ﬁred N/A N/A N/A
Application programming interfaces (APIs) for job s
management, job monitoring, resource monitoring, (4/4) Some (3/4) (20/":; Some (2/4) Some (3/4) N/A N/A N/A
low-level messaging
Language bindings Yes (6) C, REST C, Python C, Python @ N/A N/A N/A
Only Only Only Only

Bulk job submission

uniform jobs uniform jobs uniform jobs uniform jobs N/& N/A N/A

H
o

i

SINGLE-USER MODE

High-speed streaming job submission

<
>

N/A

3
=<
©w
H
Az z 2 z 2
Wl > > > >

User-level workload management instance e

n ©» =

Support for nesting within foreign resource manager N/A Yes

Z B
o (3
>
3
>
3

No No

(two level) (two level)

Fully hierarchical management of instances N/A N/A N/A N/A

(two level) °

o
&
3
H
o

N/A N/A Yes

Scheduler specialization for user level

N/A

N/A

I

z
o

N/A

Graph-based advanced scheduling for user level

N/A N/A

o

Built-in facilities for inter-job communication and
coordination

N/A N/A N/A

.IHHII

Outdated
CLI

Modern CLI design [16] Yes N/A N/A N/A N/A

z

o

o o
II

o

APIs for job management, job monitoring, resource

Yes Some Some
monitoring, low-level messaging (4/4) N/A N/A N/A N/A

(4/4) (2/4) (2/4) N

H

©»
o o o
&
3

Language bindings Yes (6) N/A N/A N/A N/A Python Python Python No

Bulk job submission Yes N/A N/A N/A N/A ::;;2?' . :;';:gfi sin%:;l:yore
High-speed streaming job submission Yes N/A N/A N/A N/A ---
Support to launch MPI jobs Yes N/A N/A N/A N/A -- sl'l:r::zf'

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

31

http://www.llnl.gov
mailto:info@llnl.gov

2 ¢

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

Limitations

As with other high-end system software that targets the next generations of the
world’s largest supercomputers, development of the system instance of Flux, which
will enable it to be the primary system workload manager on exascale-computing-
class supercomputers by 2023, is actively being pursued as additional features and
performance/scalability tuning, commensurate with the capabilities of then the
world's fastest supercomputers, are required. It is important to note that existing
workload managers in HPC (such as SLURM or LSF) have been developed and
stabilized over a span of decades, until many HPC sites across the world adopted
and deployed them, and they continue to add features. Similar expectations apply to
the Flux framework as development effort and feature enhancements continue.

A key challenge for Flux includes the effort required for users to port their legacy
applications and workflows to the flexible and modern Flux framework. Although the
Flux framework is designed to be extremely user-friendly and easy to understand,
the transition of legacy applications still requires some amounts of effort and
developer bandwidth. This is because of the complex dependencies that could

exist in some of the scientific workflows making them challenging to untangle and
port. Additionally, the ideas of fully hierarchical resource management, graph-

based scheduling, and customization of policies in the user’s resource allocation

are relatively new, and users need well-written documents, training and tutorials to
realize the full potential of these novel capabilities. The Flux team provides detailed
and up-to-date documentation, regularly holds tutorials at major venues, and
engages with developers early on to help them design their workflow infrastructure
on top of Flux. Additionally, the Flux team actively works with developers of workflow
software to co-design and to provide the interfaces that streamline the porting of
existing applications and workflows.

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

32

http://www.llnl.gov
mailto:info@llnl.gov

2 ¢

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

SUMMARY

Today's researchers require more computing applications than ever before in their
scientific workflows. A single job may need to run multiple simulation applications at
different scales along with in situ visualization, data analysis, machine learning, and
artificial intelligence. These needs combined with hardware innovations (e.g., multi-
tiered disk storage, combinations of processors, power efficiency advancements)
have outpaced the capabilities of traditional workload management software,

which cannot handle complicated workflows or adapt to emerging supercomputer
architectures. Flux is an open-source software framework that manages and
schedules computing workflows to maximize available resources to run applications
faster and more efficiently. Flux's fully hierarchical resource management and graph-
based scheduling features improve the performance, portability, flexibility, and
manageability of both traditional and complex scientific workflows on many types
of computing systems—in the cloud, at remote locations, on a laptop, or on next-
generation architectures. Users can kick off a Flux-managed workload and monitor
its progress with just a few commands. Researchers at LLNL and around the world
are realizing that using Flux is like having your own personal supercomputer.

REFERENCES

1. Flux Framework Community, “Flux Framework: A flexible framework for
resource management customized for your HPC site,” flux-framework.org,
Apr. 2021, (Retrieved Apr. 18, 2021).

2. E.Deelman, T. Peterka, I. Altintas, C. D. Carothers, K. K. van Dam, K. Moreland,
M. Parashar, L. Ramakrishnan, M. Taufer, and J. Vetter, “The future of scientific
workflows,” The International Journal of High Performance Computing
Applications, vol. 32, no. 1, pp. 159-175, 2018.

[Online]. Available: doi.org/10.1177/1094342017704893.

3. HPCwire, “LLNL, IBM and Red Hat to Explore Standardized HPC Resource
Management Interface,” hpcwire.com/off-the-wire/lInl-ibm-and-red-hat-

to-explore-standardized-hpc-resource-management-interface/, Apr. 2021,
(Retrieved Apr. 30, 2021).

4. D. H. Ahn, . Garlick, M. Grondona, D. Lipari, B. Springmeyer, and M. Schulz,
“Flux: A Next-Generation Resource Management Framework for Large HPC
Centers,” in 2014 43rd International Conference on Parallel Processing

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

33

http://www.llnl.gov
mailto:info@llnl.gov
http://flux-framework.org
https://doi.org/10.1177/1094342017704893
https://www.hpcwire.com/off-the-wire/llnl-ibm-and-red-hat-to-explore-standardized-hpc-resource-management-interface/
https://www.hpcwire.com/off-the-wire/llnl-ibm-and-red-hat-to-explore-standardized-hpc-resource-management-interface/

2 ¢

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

Workshops, 2014, pp. 9-17.
[Online]. Available: doi.org/10.1109/ICPPW.2014.15.

5. Y. Georgiou, “Contributions for resource and job management in high
performance computing,” Ph.D. dissertation, Nov. 2010.

6. D.H.Ahn, N. Bass, A. Chu, J. Garlick, M. Grondona, S. Herbein, H. I. Ingélfsson,
J. Koning, T. Patki, T. R. Scogland, B. Springmeyer, and M. Taufer, “Flux:
Overcoming scheduling challenges for exascale workflows,” Future Generation
Computer Systems, vol. 110, pp. 202-213, 2020.

[Online]. Available: doi.org/10.1016/j.future.2020.04.006.

7. F.DiNatale, H. Bhatia, T. S. Carpenter, C. Neale, S. K. Schumacher, T.
Oppelstrup, L. Stanton, X. Zhang, S. Sundram, T. R. W. Scogland, G. Dharuman,
M. P. Surh, Y. Yang, C. Misale, L. Schneidenbach, C. Costa, C. Kim, B. D’Amora,
S. Gnanakaran, D. V. Nissley, F. Streitz, F. C. Lightstone, P.-T. Bremer, J. N.
Glosli, and H. I. IngélIfsson, “A massively parallel infrastructure for adaptive
multiscale simulations: modeling RAS initiation pathway for cancer,” in
Proceedings of Supercomputing '19: The International Conference for High
Performance Computing, ser. SC'19, 2019.

[Online]. Available: doi.org/10.1145/3295500.3356197.

8. C.-C.Yang, G. Domeniconi, L. Zhang, and G. Cong, “Design of Al-enhanced
drug lead optimization workflow for HPC and cloud,” in IEEE International
Conference on Big Data, Dec. 2020, pp. 5861-5863.

[Online]. Available: doi.org/10.1109/BigData50022.2020.9378387.

9. J. Minnich, K. McLoughlin, M. Tse, J. Deng, A. Weber, N. Murad, B. D. Madej, B.
Ramsundar, T. Rush, S. Calad-Thomson, J. Brase, and J. E. Allen, “AMPL: A Data-
Driven Modeling Pipeline for Drug Discovery,” Journal of Chemical Information
and Modeling, vol. 60, no. 4, pp. 1955-1968, 2020, PMID: 32243153.

[Online]. Available: doi.org/10.1021/acs.jcim.9b01053.

10. J. S. Vetter et al., “Extreme Heterogeneity 2018 - Productive computational
science in the era of extreme heterogeneity: report for DOE ASCR Workshop
on Extreme Heterogeneity,” Dec. 2018.

11. Lawrence Livermore National Laboratory, “Sierra,” hpc.linl.gov/hardware/
platforms/sierra, Lawrence Livermore National Laboratory, Apr. 2021,
(Retrieved Apr. 18, 2021).

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

34

http://www.llnl.gov
mailto:info@llnl.gov
https://doi.org/10.1109/ICPPW.2014.15
https://doi.org/10.1016/j.future.2020.04.006
https://doi.org/10.1145/3295500.3356197
https://doi.org/10.1109/BigData50022.2020.9378387
https://doi.org/10.1021/acs.jcim.9b01053
https://hpc.llnl.gov/hardware/platforms/sierra
https://hpc.llnl.gov/hardware/platforms/sierra

2 ¢

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

12. Oak Ridge National Laboratory, “Summit,” olcf.ornl.gov/summit/, Oak Ridge
National Laboratory, Apr. 2021, (Retrieved Apr. 18, 2021).

13. B. Yoo, M. A. Jette, and M. Grondona, “SLURM: Simple Linux Utility for
Resource Management,” in Job Scheduling Strategies for Parallel Processing,
D. Feitelson, L. Rudolph, and U. Schwiegelshohn, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, p. 44-60.
[Online]. Available: doi.org/10.1007/10968987 3.

14. IBM Spectrum LSF, “Using the IBM Spectrum LSF Resource Connector,” ibm.
com/support/knowledgecenter/SSWRJV_10.1.0/Isf welcome/Isf kc_resource
connector.html, Apr. 2021, (Retrieved Apr. 30, 2021).

15. OpenPBS, “OpenPBS: Industry-leading workload manager and job scheduler
for high-performance computing,” openpbs.org, Altair, Apr. 2021, (Retrieved
Apr. 30, 2021).

16. Adaptive Computing, “MOAB HPC SUITE,"adaptivecomputing.com/cherry-
services/moab-hpc-suite/, Adaptive Computing, Apr. 2021, (Retrieved Apr. 17,
2021).

17. Flux Framework Community, “Fluxion: An advanced graph-based scheduler
for HPC,” github.com/flux-framework/flux-sched, Apr. 2021, (Retrieved Apr. 19,
2021).

18. Flux Framework Community, “PLANNER API,” github.com/flux-framework/flux-

sched/blob/master/resource/planner/README.md, Apr. 2021, (Retrieved Apr.
18, 2021).

19. I. A. Prior, P. D. Lewis, and C. Mattos, “A Comprehensive Survey of Ras
Mutations in Cancer,” Cancer Research, vol. 72, no. 10, pp. 2457-2467, 2012.
[Online]. Available: doi.org/10.1158/0008-5472.CAN-11-2612.

20. F. Di Natale, “Maestro Workflow Conductor,” github.com/LLNL/maestrowf,
Apr. 2021, (Retrieved Apr. 26, 2021).

21. B.Van Essen, H. Kim, R. Pearce, K. Boakye, and B. Chen, “LBANN: Livermore
Big Artificial Neural Network HPC Toolkit,” in Proceedings of the Workshop
on Machine Learning in High-Performance Computing Environments, ser.
MLHPC'15. New York, NY, USA: Association for Computing Machinery, 2015.

[Online]. Available: doi.org/10.1145/2834892.2834897.

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

35

http://www.llnl.gov
mailto:info@llnl.gov
https://www.olcf.ornl.gov/summit/
https://doi.org/10.1007/10968987_3
https://www.ibm.com/support/knowledgecenter/SSWRJV_10.1.0/lsf_welcome/lsf_kc_resource_connector.html
https://www.ibm.com/support/knowledgecenter/SSWRJV_10.1.0/lsf_welcome/lsf_kc_resource_connector.html
https://www.ibm.com/support/knowledgecenter/SSWRJV_10.1.0/lsf_welcome/lsf_kc_resource_connector.html
https://www.openpbs.org
https://adaptivecomputing.com/cherry-services/moab-hpc-suite/
https://adaptivecomputing.com/cherry-services/moab-hpc-suite/
https://github.com/flux-framework/flux-sched
https://github.com/flux-framework/flux-sched/blob/master/resource/planner/README.md
https://github.com/flux-framework/flux-sched/blob/master/resource/planner/README.md
https://doi.org/10.1158/0008-5472.CAN-11-2612
https://github.com/LLNL/maestrowf
https://doi.org/10.1145/2834892.2834897

2 ¢

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

22.

23.

24.

25.

26.

27.

28.

29.

Lawrence Livermore National Laboratory, “Transforming drug discovery,”
atomscience.org, Apr. 2021, (Retrieved Apr. 19, 2021).

X. Zhang, S. Wong, and F. Lightstone, “Message passing interface and
multithreading hybrid for parallel molecular docking of large databases on
petascale high performance computing machines,” Journal of Computational
Chemistry, vol. 34, Apr. 2013.

[Online]. Available: doi.org/10.1002/jcc.23214.

S. A.Jacobs, T. Moon, K. McLoughlin, D. Jones, D. Hysom, D. H. Ahn, J.
Gyllenhaal, P. Watson, F. C. Lightstone, J. E. Allen, I. Karlin, and B. V. Essen,
“Enabling rapid COVID-19 small molecule drug design through scalable deep
learning of generative models,” The International Journal of High Performance
Computing Applications, May 2021.

[Online]. Available: doi.org/10.1177/10943420211010930.

T. L. Dahlgren, D. Domyancic, S. Brandon, T. Gamblin, J. Gyllenhaal, R.
Nimmakayala, and R. Klein, “Poster: Scaling uncertainty quantification studies
to millions of jobs,” in Proceedings of the 27th ACM/IEEE International
Conference for High Performance Computing and Communications
Conference (SC), Nov. 2015.

Exascale Computing Project, “ExaAM,"” exascaleproject.org/research-project/
exaam, Apr. 2021, (Retrieved Apr. 19, 2021).

L. Peterson, K. Athey, P. T. Bremer, V. Castillo, F. Di Natale, J. E. Field, D. Fox, J.
Gaffney, D. Hysom, S. A. Jacobs, J. Koning, B. Kostowski, S. Langer, P. Robinson,
J. Semler, B. Spears, B. Van Essen, J. S. Yeom, B. Kailkhura, and J. Thiagarajan,
“Merlin: Enabling Machine Learning-Ready HPC Ensembles,” 4 2019. [Online].

Available: osti.gov/biblio/1630805.

J. Skovira, W. Chan, H. Zhou, and D. Lifka, “The EASY — LoadLeveler API
project,” in Job Scheduling Strategies for Parallel Processing, D. G. Feitelson
and L. Rudolph, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp.
41-47. [Online]. Available: doi.org/10.1007/BFb0022286.

D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, and P. Wong,
“Theory and practice in parallel job scheduling,” in Job Scheduling Strategies
for Parallel Processing, ser. JSSPP 1997, vol. 1291. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1997, pp. 1-34, lecture Notes in Computer Science. [Online].
Available: doi.org/10.1007/3-540-63574-2_14.

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

36

http://www.llnl.gov
mailto:info@llnl.gov
https://atomscience.org
https://doi.org/10.1002/jcc.23214
https://doi.org/10.1177/10943420211010930
https://www.exascaleproject.org/research-project/exaam
https://www.exascaleproject.org/research-project/exaam
https://www.osti.gov/biblio/1630805
https://doi.org/10.1007/BFb0022286
https://doi.org/10.1007/3-540-63574-2_14

2 ¢

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

30

31.

32.

33.

34.

35.

36.

37.

38.

2021 R&D 1

. A. Merzky, M. Turilli, M. Maldonado, M. Santcroos, and S. Jha, “Using Pilot
Systems to Execute Many Task Workloads on Supercomputers,” in Job
Scheduling Strategies for Parallel Processing, D. Klusacek, W. Cirne, and N.
Desai, Eds. Cham: Springer International Publishing, 2019, pp. 61-82. [Online].
Available: doi.org/10.1007/978-3-030-10632-4_4.

Y. Babuiji, A. Woodard, Z. Li, D. S. Katz, B. Clifford, R. Kumar, L. Lacinski, Chard,
J. M. Wozniak, I. Foster, M. Wilde, and K. Chard, “Parsl: pervasive parallel

programming in python,” in Proceedings of the 28th International Symposium
on High-Performance Parallel and Distributed Computing, ser. HPDC "19. New
York, NY, USA: Association for Computing Machinery, 2019, p. 25-36. [Online].

Available: doi.org/10.1145/3307681.3325400.

J. Dickey, “12 factor CLI apps,” medium.com/@jdxcode/12-factor-cli-apps-
dd3c227a0e46, Oct. 2018, (Retrieved May 7, 2021).

Docker Inc., “Swarm: a docker-native clustering system,” github.com/docker/
swarm, Docker Inc., Apr. 2021, (Retrieved Apr. 30, 2021).

Kubernetes, “Production-Grade Container Orchestration,” kubernetes.io, Apr.
2021, (Retrieved Apr. 30, 2021).

K. Wang, “Slurm++: a distributed workload manager for extreme-scale high-

performance computing systems,” cs.iit.edu/~iraicu/teaching/CS554-S15/
lecture06-SLURM++.pdf, Feb. 2015.

SchedMD, “Heterogeneous Job Support,” slurm.schedmd.com/heterogeneous
jobs.html, SchedMD, May 2021, (Retrieved May 3, 2021).

B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz,
Shenker, and I. Stoica, “Mesos: a platform for fine-grained resource sharing
in the data center,” in Proc. of the 8th USENIX Conference on Networked
Systems Design and Implementation, ser. NSDI'11. Berkeley, CA, USA: USENIX
Association, 2011, pp. 295-308.

[Online]. Available: dl.acm.org/doi/10.5555/1972457.1972488.

V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,
Graves,). Lowe, H. Shah, S. Seth, B. Saha, C. Curino, O. O'Malley, S. Radia, B.
Reed, and E. Baldeschwieler, “Apache Hadoop YARN: Yet Another Resource
Negotiator,” in Proceedings of the 4th Annual Symposium on Cloud
Computing, ser. SOCC "13. New York, NY, USA: ACM, 2013, pp. 5:1-5:16.

00 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

37

http://www.llnl.gov
mailto:info@llnl.gov
https://doi.org/10.1007/978-3-030-10632-4_4
https://doi.org/10.1145/3307681.3325400
https://medium.com/@jdxcode/12-factor-cli-apps-dd3c227a0e46
https://medium.com/@jdxcode/12-factor-cli-apps-dd3c227a0e46
https://github.com/docker/swarm
https://github.com/docker/swarm
http://kubernetes.io
http://www.cs.iit.edu/~iraicu/teaching/CS554-S15/lecture06-SLURM++.pdf
http://www.cs.iit.edu/~iraicu/teaching/CS554-S15/lecture06-SLURM++.pdf
https://slurm.schedmd.com/heterogeneous_jobs.html
https://slurm.schedmd.com/heterogeneous_jobs.html
https://dl.acm.org/doi/10.5555/1972457.1972488

2 ¢

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

[Online]. Available: doi.org/10.1145/2523616.2523633.

39. I. Foster and C. Kesselman, “Globus: a Metacomputing Infrastructure
Toolkit,” International Journal of High Performance Computing
Applications, vol. 11, no. 2, pp. 115-128, Jun. 1997. [Online].

Available: doi.org/10.1177/109434209701100205.

40. T. Tannenbaum, D. Wright, K. Miller, and M. Livny, “Condor - A Distributed
Job Scheduler,” in Beowulf Cluster Computing with Linux, T. Sterling, Ed. MIT
Press, Oct. 2001.

41. B. Barney, “SLURM and MOAB tutorial,” hpc.llnl.gov/training/tutorials/slurm-
and-moab, Lawrence Livermore National Laboratory, Aug. 2017, (Retrieved
Apr. 22, 2021).

42. K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow: Distributed, low
latency scheduling,” in Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, ser. SOSP "13. New York, NY, USA: Association
for Computing Machinery, 2013, p. 69-84.

[Online]. Available: doi.org/10.1145/2517349.2522716.

43. X. Zhou, H. Chen, K. Wang, M. Lang, and I. Raicu, “Exploring distributed
resource allocation techniques in the SLURM job management system,” Illinois
Institute of Technology, Department of Computer Science, Tech. Rep., 2013.

44.). Gyllenhaal, T. Gamblin, A. Bertsch, and R. Musselman, “Enabling high job
throughput for uncertainty quantification on BG/Q,” in IBM HPC Systems
Scientific Computing User Group (ScicomP), May 2014.

45.]. Yu and R. Buyya, “A Taxonomy of Workflow Management Systems for Grid
Computing,” Journal of Grid Computing, vol. 3, no. 3, pp. 171-200, Sep. 2005.
[Online]. Available: doi.org/10.1007/s10723-005-9010-8.

46. E. Deelman, G. Singh, M. H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K.
Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob, and D. S. Katz, “Pegasus:
A framework for mapping complex scientific workflows onto distributed
systems,” Scientific Programming, vol. 13, no. 3, pp. 219-237, Dec. 2005.

[Online]. Available: doi.org/10.1155/2005/128026.

47. P. Couvares, T. Kosar, A. Roy, J. Weber, and K. Wenger, Workflow Management
in Condor. London: Springer London, 2007, pp. 357-375.

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

38

http://www.llnl.gov
mailto:info@llnl.gov
http://doi.org/10.1145/2523616.2523633
http://doi.org/10.1177/109434209701100205
https://hpc.llnl.gov/training/tutorials/slurm-and-moab
https://hpc.llnl.gov/training/tutorials/slurm-and-moab
https://doi.org/10.1145/2517349.2522716
https://doi.org/10.1007/s10723-005-9010-8
https://doi.org/10.1155/2005/128026

2 ¢

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

[Online]. Available: doi.org/10.1007/978-1-84628-757-2_22.

48. S. Herbein, T. Patki, D. H. Ahn, D. Lipari, T. Dahlgren, D. Domyancic, and M.
Taufer, “Poster: Fully hierarchical scheduling: paving the way to exascale
workloads,” in Proceedings of the 29th ACM/IEEE International Conference for
High Performance Computing and Communications Conference (SC), Nov 2017.

49. J. M. Wozniak, T. G. Armstrong, M. Wilde, D. Katz, E. Lusk, and I. T. Foster,

“Swift/T: large-scale application composition via distributed-memory data flow
processing.” Proc CCGrid, 2013.

ADDITIONAL SUPPORTING INFORMATION

Flux website: flux-framework.org

Flux promo video: youtu.be/YIwt51dyXOE

Flux documentation: flux-framework.readthedocs.io/en/latest/

Flux open-source code: github.com/flux-framework

Flux on Twitter: twitter.com/fluxframework

AFFIRMATION

I/'we certify that all of the information within this submission entry is accurate and
represents the most up-to-date information available for this entry.

\,j)gw} //‘l. ﬁ'l—\ 6/9/2021

Signature Date

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

39

http://www.llnl.gov
mailto:info@llnl.gov
https://doi.org/10.1007/978-1-84628-757-2_22
https://flux-framework.org
https://flux-framework.readthedocs.io/en/latest/
https://github.com/flux-framework
https://twitter.com/fluxframework
Ahn, Dong H.
6/9/2021

&

f

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

CONTACTS

Principal investigator from each of the submitting organizations:

Dong H. Ahn

Computer Scientist, PI

Lawrence Livermore National Laboratory
ahn1@lInl.gov

925.719.2219

Development team:

Albert Chu

Computer Scientist

Lawrence Livermore National Laboratory
chu11@linl.gov

925.422.5311

Jim Garlick

Computer Scientist

Lawrence Livermore National Laboratory
garlick1@lInl.gov

925.423.8917

Mark Grondona

Computer Scientist

Lawrence Livermore National Laboratory
grondonal@linl.gov

925.424.6760

Stephen Herbein

Computer Scientist

Lawrence Livermore National Laboratory
herbein1@lInl.gov

925.423.7859

Daniel Milroy

Postdoctoral Researcher

Lawrence Livermore National Laboratory
milroy1@lInl.gov

925.424.4419

40

Michela Taufer

Professor, Co-PI

University of Tennessee, Knoxville
taufer@utk.edu

865.974.9952

Christopher Moussa

Computer Scientist

Lawrence Livermore National Laboratory
moussal@linl.gov

925.423.5564

Tapasya Patki

Computer Scientist

Lawrence Livermore National Laboratory
patki1@linl.gov

925.423.3632

Thomas R.W. Scogland

Computer Scientist

Lawrence Livermore National Laboratory
scogland1@linl.gov

925.423.3921

Becky Springmeyer

Computer Scientist

Lawrence Livermore National Laboratory
springmeyer1@linl.gov

925.423.0794

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

http://www.llnl.gov
mailto:info@llnl.gov

2 ¢

FLUX: A FULLY HIERARCHICAL WORKLOAD MANAGER FOR SUPERCOMPUTING WORKFLOWS

Media and public relations person who will interact with R&D’s editors regarding
entry material:

Connie Pitcock

Business Development and Marketing Associate
Lawrence Livermore National Laboratory
pitcock1@lInl.gov

925.422.1072

Person who will handle banquet arrangements for winners:

Dong H. Ahn

Computer Scientist, PI

Lawrence Livermore National Laboratory
ahn1@lInl.gov

925.719.2219

2021 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.lInl.gov | info@lInl.gov

41

http://www.llnl.gov
mailto:info@llnl.gov

