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Variorum: Vendor-Agnostic 
Computing Power Management 
   

1. PRODUCT/SERVICES CATEGORIES

A. Title

Variorum: Vendor-Agnostic Computing Power Management 

B. Product Category

Software/Services | Special Recognition: Green Tech  

2. R&D 100 PRODUCT/SERVICE DETAILS

A. Primary submitting organization 

Lawrence Livermore National Laboratory

B. Co-developing organizations 

n/a

C. Product brand name

Variorum

D. Product Introduction 

This product was introduced to the market between January 1, 2022, and March 31, 2023. This 
product is not subject to regulatory approval. 

http://www.llnl.gov
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E. Price in U.S. Dollars

Free. Variorum is open source and free to users.  

F. Short description 

Pushing supercomputers to their limits requires a deeper understanding of power and energy 
than standard software and operating systems allow. Variorum provides robust interfaces 
that measure and optimize computation at the physical level: temperature, cycles, energy, and 
power. With Variorum, administrators and users can efficiently and effectively use computing 
resources. 

G. Type of institution represented

Government or independent lab/institute

H. Submitter’s relationship to product

Product developer

I. Photos

• Variorum logo

• Vendor-neutral diagram 

• Comparison matrix – software 

• Comparison matrix – hardware

J. Video

Available on YouTube: https://youtu.be/rgJGgPERBao
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3. PRODUCT/SERVICE DESCRIPTION

A. What does the product or technology do? 

Supercomputers can enable amazing research and scientific discoveries, but they require a 
sophisticated coordination of application codes, diverse hardware components, and system 
software. Optimizing and managing power and energy on such large-scale supercomputers is 
critical for many reasons. Efficient systems can process more user requests and improve the 
pace of scientific discovery. Additionally, understanding the power and energy costs allows for 
better utilization and environmentally friendly supercomputing practices. 

An HPC system’s power and performance are affected by configurations and requirements 
at different levels of the system, and each level presents challenges—and opportunities—for 
optimization. The most granular level is on the individual nodes, where the most impactful 
monitoring, managing, and optimizing of power and performance can (and should) occur via 
precision tuning of a multitude of low-level options, or “dials” as on a radio or sound engineer’s 
board. This lowest level is the key to the hierarchy above it. These low-level dials, however, are 
complex and vary significantly across vendors and are often poorly documented. While some 
dials are obscured by specific hardware and software configurations, others have nonstandard 
interfaces that lack portability to other systems and are challenging to integrate into user 
applications. 

Variorum is an extensible, vendor-neutral software library for exposing the power, energy, and 
performance capabilities of low-level hardware dials across diverse architectures in a user-
friendly manner. It is part of the U.S Department of Energy’s (DOE) Exascale Computing Project 
(ECP)21—specifically, the Argo Project22 in which Variorum is a key component for node-level 
power management in the high-performance computing (HPC) PowerStack Initiative24. Variorum 
provides a rich set of vendor-neutral application programming interfaces, or APIs, such that 
the user can query or control hardware dials without needing to know the underlying vendor’s 
implementation (e.g., machine-specific registers [MSRs] or sensor interfaces). These APIs enable 
supercomputing users to gain a better understanding of power, energy, and performance 
through various metrics. Additionally, the APIs enable system software to control hardware 
dials to optimize for a particular goal. As an open-source tool, Variorum is widely accessible 
to diverse users of supercomputers, bare-metal cloud infrastructure, as well as researchers 
who study power and energy management on their personal laptops. Variorum focuses on 
ease of use and reduced integration burden in scientific applications and workflows, and has 
enabled support for all three upcoming U.S. exascale supercomputers—El Capitan at Lawrence 
Livermore National Laboratory (LLNL), Aurora at Argonne National Laboratory, and Frontier at 
Oak Ridge National Laboratory—and many other HPC systems. 

http://www.llnl.gov
mailto:info@llnl.gov
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Variorum and the PowerStack 

Opportunities for power and performance optimization exist at all levels in a supercomputer’s 
software stack: Power-aware job schedulers20, runtime system15,25 as well as large-scale 
monitoring frameworks26 allow for balancing power allocations between multiple users and 
among different tasks of a parallel application. We refer to such interoperable power-aware 
software as the PowerStack. Figure 1 depicts an interoperable PowerStack and its various 
components. 

Each level in the PowerStack provides options for adaptive and dynamic power management 
and may operate as an independent entity if needed depending on the requirements of the 
supercomputing site under consideration. Site-specific requirements such as cluster-level 
power bounds, user fairness, or job priorities are translated into inputs to the job scheduler. 
The job scheduler (or resource manager) chooses power-aware scheduling plugins to ensure 
compliance, with the primary responsibility being management of allocations across multiple 
users and diverse workloads. Such allocations (physical nodes and job-level power bounds) 
serve as inputs to a fine-grained, job-level runtime system to manage the application, in turn 
relying on vendor-agnostic node-level measurement and control mechanisms. 

Figure 1: Overview of an HPC PowerStack. 

http://www.llnl.gov
mailto:info@llnl.gov
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Optimizations at multiple levels in a PowerStack can only be made possible with the help of 
dials that exist at the lower, compute-node level, such as those that allow for measurement of 
energy and temperature; tuning of central processing unit (CPU) or graphics processing unit 
(GPU) frequency; or setting of CPU, GPU, and memory power caps. However, these low-level dials 
vary significantly across vendors and can be incredibly complex to understand and tune. For 
example, Intel processors use MSRs to track and manage power and energy; AMD processors use 
a mailbox-based design; and IBM processors utilize sensors combined with file system firmware 
interfaces. Similarly, NVIDIA GPUs and AMD GPUs expose these dials through vendor-specific 
interfaces and associated libraries, such as the nvidia-smi or rocm-smi. 

Even within the same vendor, dials can vary significantly with each new generation of processors. 
From a user’s perspective, understanding these differences is extremely challenging; even if they 
painstakingly do understand them, incorporating these dials into their source code results in 
a lack of portability across supercomputing platforms. Several other low-level dials for power 
capping, energy and thermal management, clock frequency management, and other features 
present similar issues. Vendor architectures also vary in terms of the components such as 
differing numbers of CPUs and GPUs, and memory units, which further adds to the complexity 
of fine-tuning the associated dials. Figure 2 shows depicts four vendors with varying node-level 
components as well as dials. 

Figure 2: Each vendor architecture has different components (e.g., cores, GPUs, memory, artificial 
intelligence accelerators) as well as different dials and underlying mechanisms for tuning.

. 
 

http://www.llnl.gov
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Supercomputer users have diverse backgrounds and include application and domain scientists, 
research software engineers, and system administrators. Often, users are unfamiliar with low-
level architecture details across different vendors, and some power and performance dials 
require the user to have elevated access privileges. As a result, accessing power and performance 
optimization dials that are complex and vendor-specific can be chaotic, unwieldy, and error prone 
from the users’ perspective. A representation of these dials and their access challenges is shown 
in Figure 3, where some users do not have access to certain dials at all, while others have to adapt 
their code in a vendor-specific manner each time they try to build on a new system, drastically 
reducing their productivity. 

Figure 3: Optimization dials are unwieldy and complex for users to access. 

Variorum solves this problem and provides users with easy access to these dials. It has been 
integrated successfully into all levels of an interoperable PowerStack. As shown in Figure 4, 
Variorum’s API abstracts out the details of the vendor-specific implementations and makes 
dials available to both general and advanced users in a portable manner. These dials allow 
for measurement and control of various physical features on processors and accelerators, 
such as power, energy, frequency, temperature, and performance counters. With Variorum, 
supercomputing users can tune these dials through a common, user-friendly interface without 
needing to know a vendor’s specific implementation details. 

http://www.llnl.gov
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Figure 4: Variorum provides easy-to-use, vendor-neutral access to diverse set of users and integrates easily  
with other levels and components of a PowerStack. 

Variorum adapts to an HPC system’s new performance features, deprecates old features among hardware 
generations, and enables performance optimization toward a particular goal (e.g., to enforce a power limit). When 
combined with complementary technologies, Variorum ensures production-safe and user-space (non-root) access 
to these vital low-level dials. Currently, we support several different vendors and multiple generations of their 
microarchitectures.  

For the development of Variorum, we focused on a set of important requirements extracted from our learnings 
and previous experiences with the development of power management mechanisms: 

• Create device-agnostic APIs: We do not want the user to have to know or understand how to interface 
with each vendor and each device. The Variorum library is built for a target architecture, which may be 
heterogeneous, and can collect data from each device through a single front-facing interface. 

• Provide a simple interface: We want users and tool developers to be able to not only collect information 
from the underlying hardware, but also to easily control various features provided by the vendor. 

http://www.llnl.gov
mailto:info@llnl.gov
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• Easily extend capabilities to new devices and generations within a device: We want to easily to 
support new features, deprecate old features among generations of devices, and adapt features that may 
have different domains of control from one generation to another (i.e., sockets, cores, threads). 

• Easily integrate with applications, workflows, and system tools: We want Variorum’s interfaces to 
be simple and portable from the perspective of supporting integrations for many broad use cases with 
varying optimization goals, including those from application scientists as well as system administrators.

Example: Print Power Limit API 
Variorum can be built for each vendor’s architecture with the popular CMake or Spack27 package management 
and installation tools. Building Variorum creates the libvariorum library, the powmon monitoring tool, and 
several Variorum examples. Users can quickly get started with examples of each of our rich APIs, their usage 
with MPI and OpenMP programming standards, examples with Fortran and Python bindings, and an example of 
software tools and workflows that may be integrated with Variorum’s JavaScript Object Notation (JSON) API. 

Variorum provides a suite of robust APIs for printing outputs, managing power levels, enabling/disabling certain 
features, topology querying, integrating and more. These are described later on and documented on our 
ReadTheDocs page. In this section, we show one example API. 

The example below shows how Variorum’s API can be easily used to obtain the power limit of a particular platform 
in a vendor-neutral manner. The source code below shows an example based in C, but similar code can also be 
written with Python or Fortran using Variorum bindings. The variorum _ print _ power _ limit API prints the 
output in a tabular format that can be filtered and parsed by a data analysis framework such as R or Python. 

The variorum _ print _ power _ limit API prints the power limits available on the platform and informs the 
user about the maximum power cap that they can set on that particular platform. This helps the user determine 
the range in which the power can be controlled and allocated on that particular platform. Because there are 
differences in internal mechanisms for each vendor, the output varies slightly based on the platform, but the front-
facing user-level API stays the same. The API also indicates units as well as other important parameters for the 
user’s consideration when available. In the example below, the user makes a function call to this API in an easy and 
portable manner. All they need to do is include the variorum.h library in their application code and then add one 
line to obtain the power limit information: ret = variorum _ print _ power _ limit();. We show the output 
obtained with this example program from different platforms below as well.

http://www.llnl.gov
mailto:info@llnl.gov
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#include <stdio.h> 

#include <variorum.h> 

int main(int argc, char **argv) 

{ 

    int ret; 

    ret = variorum _ print _ power _ limit();     

    return ret; 

} 

On an IBM Power9 platform, the output of the above may look similar to the following. Here, you see the 
hostname of the system, its current power limit, and its maximum and minimum power limits (all in watts 
or W). Additionally, we see the power-shifting ratio (PSR)30, which is a specific socket-level feature that 
IBM Power9 platform provides to set the ratio of power between the CPU and the GPU. The units for this 
PSR feature are reported as a percentage value, and it is available on both sockets (denoted by _0 and _8 
in the example output below). 

_ POWERCAP Host CurrentPower _ W MaxPower _ W MinPower _ W PSR _ CPU _ to _

GPU _ 0 _ % PSR _ CPU _ to _ GPU _ 8 _ %

 

_ POWERCAP lassen3 3050 3050 500 100 100 

On an NVIDIA GPU platform, such as LLNL’s Lassen supercomputer, the output may look similar to the 
following. Here, we see the host as well as the device ID for the GPU, along with the power limit in watts. 
Lassen has four NVIDIA GPUs per node, so the ID and limit of each GPU is shown in the output. 

_ GPU _ POWER _ LIMIT Host Socket DeviceID PowerLimit _ W 

_ GPU _ POWER _ LIMIT lassen1 0 0 300.000 

_ GPU _ POWER _ LIMIT lassen1 0 1 300.000 

_ GPU _ POWER _ LIMIT lassen1 1 2 300.000 

_ GPU _ POWER _ LIMIT lassen1 1 3 300.000 

On an Intel platform, the output of this example would be similar to the following. Useful information such 
as the hostname, the socket (processor) ID, power limits, and time windows for enforcement of these are 
shown in Variorum’s output. On Intel systems, the time window limit needs to be specified along with the 
power limit, so this information is displayed. Intel systems utilize MSRs for obtaining information, so the 
offset and actual bit values of the registers are also provided, which may be helpful for advanced users. 
Additionally, memory power limit (marked as DRAM _ POWER _ LIMIT) as well as information about units 
of conversion is shown as output, as it is available on this platform—but not available on other platforms 
such as IBM Power9 or NVIDIA GPUs. 

http://www.llnl.gov
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_ PACKAGE _ POWER _ LIMITS Offset Host Socket Bits PowerLimit1 _ W TimeWindow1 _

sec PowerLimit2 _ W TimeWindow2 _ sec 

_ PACKAGE _ POWER _ LIMITS 0x610 thompson 0 0x7851000158438 135.000000 1.000000 

162.000000 0.007812 

PACKAGE _ POWER _ LIMITS 0x610 thompson 1 0x7851000158438 135.000000 1.000000 

162.000000 0.007812 

_ DRAM _ POWER _ LIMIT Offset Host Socket Bits PowerLimit _ W TimeWindow _ sec 

_ DRAM _ POWER _ LIMIT 0x618 thompson 0 0x0 0.000000 0.000977 

_ DRAM _ POWER _ LIMIT 0x618 thompson 1 0x0 0.000000 0.000977 

_ PACKAGE _ POWER _ INFO Offset Host Socket Bits MaxPower _ W MinPower _ W 

MaxTimeWindow _ sec ThermPower _ W 

_ PACKAGE _ POWER _ INFO 0x614 thompson 0 0x2f087001380438 270.000000 39.000000 

40.000000 135.000000 

_ PACKAGE _ POWER _ INFO 0x614 thompson 1 0x2f087001380438 270.000000 39.000000 

40.000000 135.000000 

_ RAPL _ POWER _ UNITS Offset Host Socket Bits PowerUnit _ W EnergyUnit _ J 

TimeUnit _ sec 

_ RAPL _ POWER _ UNITS 0x606 thompson 0 0xa0e03 0.125000 0.000061 0.000977 

_ RAPL _ POWER _ UNITS 0x606 thompson 1 0xa0e03 0.125000 0.000061 0.000977 

Despite these differences between vendors and platforms, from a user’s perspective, the front-facing API 
stays the same, as shown in the first example above. Variorum makes it extremely easy for users to port 
their application code across various architectures.

System Software Integrations
Variorum has been successfully integrated with production-level system software in the PowerStack 
including resource managers that help with hardware allocations for scientific applications (e.g., Flux20, 
a 2021 R&D100 winner), runtime systems that optimize the critical path of applications (e.g., Intel GEOPM 
[Global Energy Optimizer and Power Manager]15), large-scale system monitoring frameworks (e.g., OVIS 
LDMS [Lightweight Distributed Metric Service]26), as well as application profiling and portability tools (e.g., 
Caliper5 and Kokkos28).

Flux20, an R&D100 2021 winner, is a flexible framework for resource management deployed on several HPC 
clusters at LLNL and will be the key resource manager for the upcoming El Capitan exascale supercomputer. 
The framework consists of a suite of projects, tools, and libraries that may be used to build site-custom 
resource managers for HPC centers. Flux helps manage multiple user applications on shared clusters 
including tasks such as allocating physical nodes to user job requests, accounting for their projects, and 
setting job priorities.

http://www.llnl.gov
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The Intel Global Extensible Open Power Manager (Intel GEOPM)15 is a framework for exploring power 
and energy optimizations targeting heterogeneous platforms and MPI applications. GEOPM supports 
use cases such as reading hardware counters and setting hardware controls with platform-independent 
syntax using a command-line tool on a particular compute node. GEOPM dynamically coordinates 
hardware settings across all compute nodes for an MPI application, enabling critical path optimizations.

Caliper5 is a program instrumentation and performance measurement framework. This software allows 
the user to bake performance analysis capabilities directly into applications and activate them at runtime. 
Caliper is primarily aimed at HPC applications but works for any C/C++/Fortran program on Unix or Linux 
platforms. The Kokkos28 C++ Performance Portability EcoSystem is a solution for writing modern C++ 
applications in a hardware-agnostic way. The EcoSystem consists of three main components: the Kokkos 
Core Programming Model, the Kokkos Kernels Math Libraries, and the Kokkos Profiling and Debugging 
Tools. Kokkos is also a part of the DOE’s ECP.

LDMS26, an R&D100 2015 winner, is a low-overhead, low-latency framework for collecting, transferring, 
and storing metric data on a large, distributed computing system. Metric information can be updated 
by a kernel module that runs only when applications yield the processor and are transported using 
operations similar to Remote Direct Memory Access (RDMA), resulting in minimal overhead and noise 
during data collection.

Variorum is integrated with all of these system software 
tools, which means users and system software developers 
can focus on application results instead of the tuning and 
portability of low-level dials across different vendor 
platforms and various system software (see Figure 5).

Figure 5 (left): Variorum has been integrated successfully in all 
levels of a PowerStack with supported system software such as 
Flux, Kokkos, Caliper, GEOPM, and LDMS.

http://www.llnl.gov
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Variorum not only provides power management features for system-level software, but it can also enable 
scientific applications to directly monitor system power during execution. For example, the Multiscale 
Machine-Learned Modeling Infrastructure (MuMMI) workflow29, which is an award-winning workflow for 
cancer research on the Sierra supercomputer, can interface with Variorum at both the simulation level and 
the Flux job manager level.

The MuMMI workflow has been designed to enable multiscale simulations of RAS biology to understand its 
role in the initiation of cancer. Over 30% of the total cancers in the world have been attributed to the RAS 
family of cancer-causing genes. Yet, the true role of RAS in the cancer initiation is not well understood, 
limiting the ability to design drugs targeting RAS. Exploring RAS biology on cell membranes requires 
unraveling molecular interactions at high resolutions but at biologically relevant sizes and time scales. 
As illustrated in Figure 6, MuMMI framework couples a single macroscale simulation that spans large 
time- and length-scales with several thousand molecular dynamics (MD) simulations that provide high-
resolution data for small spatiotemporal regions. The framework uses machine learning (ML) to evaluate 
the macroscale simulation and select regions of interest to spawn the corresponding MD simulations. ML-
based sampling allows exploration of the configuration space significantly more effectively resulting in a 
scope of exploration that is not achievable using only brute force calculations. Finally, in situ analysis of the 
conjugate gradient (CG) simulations provide feedback to improve the parameterization of the macroscale 
simulation on the fly. With Variorum, MuMMI researchers do not need to understand the low-level details 
of power management, and can use Variorum’s powmon monitoring tool or its Flux integration to make 
their codebase more energy efficient.

Figure 6: Overview of the MuMMI cancer workflow which shows a combination of machine-learning driven macro- 
and micro-scale simulations to understand the role of RAS in cancer. Variorum can be used to understand power 

characteristics of MuMMI and other workflows.

Power Management Use Cases Enabled by Variorum

Variorum enables an end-to-end, vendor-neutral PowerStack, which supports many important use cases 
in large-scale distributed computing, including those from application scientists, system administrators, 

http://www.llnl.gov
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and academic and industry researchers. We discuss these use cases as well as some open challenges in 
power and energy management, which benefit from the use of low-level optimizations and fine tuning of 
dials with Variorum and its aforementioned integrations.

Optimization of Scientific Workflow Performance, Power, and Energy

When it comes to large-scale power and energy management, several technical aspects are not well 
understood and are active areas of ongoing research and development. One such aspect is the incorrect 
assumption that giving more power to an application will always improve its performance and that 
enforcing a power cap will always slow an application and hinder its performance. While this is true for 
CPU-bound and computationally intense applications such as High Performance LINPACK, it does not 
apply to most scientific workflows and applications. Many applications exhibit specific dynamic phase 
behaviors and tend to be more bound by memory, I/O (input/output), and network usage. Scientific 
applications differ from one another in their memory, communication, I/O requirements, and phase 
behaviors. Being able to steer power correctly based on an individual application’s characteristics and its 
associated phase behaviors is critical for improving overall performance as well as efficient utilization of 
power—both for a user and the system in terms of energy efficiency.

Figure 7 shows an example of this effect. This dataset shows several well-known parallel application 
benchmarks running on an Intel Sandy Bridge allocation with 8 nodes, where each node has 2 processors 
and 8 cores per processor (16 cores per node)31. The maximum power limit (peak power) on each processor 
(2 on each node) is 115 W, and the minimum power limit per processor is 51 W. The x-axis shows the power 
cap enforced in watts on each processor, while the y-axis shows the relative execution time (or runtime) 
of the application under the power cap across the 8-node allocation. Lower is better on this graph, which 
indicates that the application ran faster. OpenMP and MPI are two ways to leverage processor parallelism; 
the former uses threads, and the latter uses processes. For some of the applications where we could 
select both mechanisms, we have indicated this choice in the graph as a suffix.

Reading this graph from right to left—maximum power cap to minimum power cap—allows for 
comparison of performance of individual applications. Some applications, such as LULESH or AMG-MPI, 
incur a significant performance slowdown when they are given less power. On the other hand, for many 
applications such as MiniFE-OpenMP or CoMD, there is no impact on application’s execution time when 
a power cap is applied. This means that reducing the power supplied to the application by more than a 
factor of 2 (from 115 W to 51 W per processor) had no impact on its performance, providing a significant 
opportunity to save energy costs as well as improve energy efficiency for these applications.

http://www.llnl.gov
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Figure 7: Applications behave differently when power caps are applied. For some applications, their 
performance is unimpacted by setting a power cap, providing tremendous opportunity for energy 

savings and cost reduction.

Similar trends are observed with scientific workflows that run on multiple GPUs and at scale, 
such as the MuMMI workflow described previously. The MuMMI workflow makes significant use 
of GPUs on the Lassen and Sierra supercomputers, both of which are some of the world’s fastest 
supercomputers hosted at LLNL. A key part of MuMMI includes MD simulations, which use a 
code called ddcMD32 to provide the data of interest. The ddcMD code is run almost exclusively 
on GPUs to support the multiscale simulations and maximize utilization on the Lassen/Sierra 
clusters.

Figure 8 shows the impact of GPU power capping on the ddcMD code when running on Lassen. 
Each compute node has 4 NVIDIA Volta GPUs along with 44 CPU cores. The x-axis here is a 
power cap in watts, and the y-axis is the clock rate or frequency in megahertz (MHz), which is 
a key indicator of application performance. Higher is better on this graph: A higher frequency 
indicates better performance (lower execution time) for the application. A total of 4600 profiles 
of ddcMD are shown in this graph, with approximately 200–500 profiles per power cap. The 
variation observed in their execution time is also shown. The maximum power cap (peak power) 
on each GPU is 300 W, and the minimum is 100 W. Dropping the per-GPU power from 300 W 
to 175 W has no impact on the execution time or performance of ddcMD. Capping the GPUs on 
Lassen to 175 W results in cluster-wide power savings of about 382 kW with no performance 

http://www.llnl.gov
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slowdown. This translates to 254.6 kWh of energy savings and $43,000 of cost savings per day 
(assuming 7 cents per kWh), which can have a significant impact on the supercomputing center’s 
energy efficiency. Variorum’s integration with LDMS for fine-granularity data collection is critical 
to identifying opportunities for such savings.

Figure 8: Impact of GPU power capping on ddcMD performance shows that 254.6 kWh of energy can 
be saved per day with intelligent power capping.

Another important aspect of power and energy management of scientific applications is that of 
optimizing the critical path under a system-level power constraint. For a parallel application, the 
critical path is the longest path through its functions, which are typically associated with sections 
of code that require the most amount of time and resources within the application. Speeding 
up the critical path can speed up the application significantly. Because applications behave 
differently under a power budget, selecting the optimal way to distribute an application’s parallel 
tasks during its execution can have a significant impact on this performance. This technique, 
often referred to as configuration selection, requires a runtime system such as Conductor25,33,34 

(a research-level runtime system developed at University of Arizona) or GEOPM to be present to 
balance power and performance dynamically between application ranks. Variorum’s integration 
with GEOPM allows for selection of configurations across diverse architectures.

Figure 9 shows a Pareto frontier graph25 with different configurations (number of cores per 
node, varying from 2 to 16) and their power consumption, as well as execution time, for the 
Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH) application35. 
LULESH is a proxy application for a mission-critical code that simulates the Sedov blast problem 
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and approximates the hydrodynamics equations discretely by partitioning the spatial problem 
domain into a collection of volumetric elements defined by a mesh. As can be seen clearly 
from the graph, a set of optimal configurations for LULESH are based on the amount of power 
available; determining these and selecting them at runtime requires integration with power-
balancing software such as GEOPM or Conductor.

Figure 9 (left): Optimal configurations and 
power-performance curve for the LULESH 
proxy application indicates the importance 
of critical path optimization.

Improving System Power Utilization
Modern supercomputers are designed 
to be worst-case power provisioned, 
with the assumption that all nodes in 
the system should be able to operate 
at peak power simultaneously. While 
this system design and power allocation 
strategy is useful for a few power-hungry 
benchmarks such as High-Performance 
LINPACK36, it often leads to inefficient 

use of power for most HPC production applications that fail to utilize the allocated peak power 
on a node, as shown below.

A key limitation of worst-case provisioning in supercomputing design is underutilization of the 
power infrastructure. This can be validated from large-scale system power data, such as that 
collected on the Quartz supercomputer at LLNL. The Quartz supercomputer is a 2604-node 
production cluster consisting of Intel Broadwell nodes with 36 cores per node. The cluster is 
organized in 42 racks with 62 nodes per rack. Figure 10 shows total power consumption of 
the Quartz cluster in megawatts on the y-axis and time samples taken every 3 minutes on the 
x-axis during a 67-month period. Quartz is provisioned for 1.35 MW peak procured power; 
however, the figure shows that only about 61% of this power is utilized on a regular basis. 
Other supercomputers at LLNL, as well as at other major supercomputing centers within the 
U.S. and globally, report similar trends. In our dataset, we observe that 39% of the power is 
left unutilized, which means there is room for either saving energy by using power capping or 
improving utilization and throughput with dynamic power management.
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Figure 10: Power utilization on the Quartz supercomputer.

Ideally, supercomputing centers would utilize their procured power fully to accomplish more 
science, especially as power is a limited and expensive resource. A more flexible and efficient 
design approach is to build a reconfigurable system that has more capacity (nodes) under the 
same site-level power constraint and can adapt to applications’ requirements. Such a system 
can provide limited power to a large number of nodes or peak power to a smaller number of 
nodes, or use an alternative allocation in between based on application characteristics. This 
approach is referred to as hardware overprovisioning37 and has been an active research area. For 
overprovisioning to be successful, and to effectively utilize power with energy-aware scheduling 
of applications, power must be dynamically managed and intelligently allocated to applications 
that require it the most. This requires power-aware scheduling or power-aware resource 
management31,38,39,40 which can be enabled by designing intelligent allocation policies within the 
Variorum and Flux integration. Flux can leverage Variorum’s power management capability and 
best-effort power capping API to allocate power based on the job’s usage, allowing the system to 
be more energy efficient.

Detecting and Mitigating Power Swings

Another important use case for large-scale power management is that of power swings that 
occur due to applications exhibiting distinct phase behaviors such as compute, communication 
(network traffic), I/O and checkpointing, or global synchronizations—all of which are common 
scenarios in parallel simulations and codes. Figure 11 shows an example of power swings with 

http://www.llnl.gov
mailto:info@llnl.gov


19  2023 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY 

VARIORUM  | www.llnl.gov | info@llnl.gov

the Livermore Big Artificial Neural Network toolkit (LBANN) 41 running at full scale on the Sierra 
supercomputer, which is one of top 10 fastest supercomputers in the world42. LBANN is a deep 
learning HPC framework that utilizes all 4 GPUs available on the Sierra nodes. The dataset 
shows power consumption of LBANN over a 6-hour time period for the application’s run, where 
samples were collected every 3 minutes. Power swings of greater than 200 kW were observed 
during the run, attributed to the application’s phase and synchronization behavior.

Figure 11: Power swings of >200 kW were observed on the Sierra supercomputer when executing a 
parallel ML application called LBANN at full scale.

Such power swings are common for many HPC applications and could worsen at exascale and 
beyond, leading to electrical supply grid disruptions and concerns being raised by the electricity 
provider. Preventing these fluctuations is important, especially as the scale of supercomputing 
increases. Such swings are common for many HPC applications and could worsen at exascale 
and beyond. Dynamic power management allows for solutions where power can be ramped 
down slowly, or power caps can be enforced to limit the amplitude of the swings. Our Variorum 
and Flux integration is being used to determine how to detect such swings at scale, and how 
resource managers can proactively prevent them.

Addressing Manufacturing Variability

Another less understood aspect for power and energy efficiency is that of processor 
manufacturing variability, wherein processors with the same microarchitecture can exhibit 
inhomogeneous power and performance characteristics, both with and without a power cap. 
This is attributed to the chip fabrication and lithography process and can result in over 20% run-
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to-run variation in application performance without any power constraints as well as cause over 
4x variation in power-constrained scenarios43, 44, 45. Most vendors, including Intel and IBM, have 
confirmed that processor manufacturing variability is expected to worsen in the future and at 
larger scales, making application-level power steering in system software absolutely necessary 
on future systems.

Figure 12 shows an example of manufacturing variability under power capping for two generations 
of Intel architectures: Sandy Bridge and Broadwell across three common HPC benchmarks: NAS 
multigrid (MG), CG, and STREAM46. NAS MG approximates the solution to a 3D discrete Poisson 
equation using the V-cycle MG method. NAS CG estimates the smallest eigenvalue of a large, 
sparse, symmetric positive-definite matrix using the inverse iteration with the CG method as a 
subroutine for solving systems of linear equations. The STREAM benchmarks tests for memory 
intensity and measures memory bandwidth using simple array manipulation operations. The 
y-axis shows Instructions per cycle (higher is better), and the x-axis shows the power cap. Data 
from 64 homogeneous processors (exactly same microarchitecture) is shown, and as can be 
observed rather counterintuitively, there is significant variation in IPC (instructions per clock) 
from one processor to another. In some situations, performance can vary by as much as 4x.

 

Figure 12: Comparing manufacturing variability on Intel generations.

Such variability in processor performance can significantly impact the applications running 
on them, especially in power-constrained scenarios. Using Variorum’s vendor-neutral APIs 
integrated with runtime systems such as GEOPM or power-aware policies from Flux, we can 
significantly reduce these variations and their impact on critical applications.

Consideration for Special Recognition: Green Tech

Environmental factors are playing a key role in the modern society, with many industries 
embracing goals towards sustainability and energy efficiency. Reducing carbon emissions and 
charting a path to net zero for large-scale computing systems, including supercomputers and 
data centers, is an active area of research in the HPC and cloud computing communities—
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especially in the new exascale era and with ever-evolving HPC architecture innovations47, 48, 49, 50, 

51, 52, 53. Current research has focused on aspects of efficient machine room design, water usage, 
and cooling, but not enough research has been conducted in the area of increasing overall 
system power utilization and energy efficiency with dynamic power management. One of the 
main reasons for this dearth of research is the lack of standardized and homogeneous low-level 
interfaces and the sheer complexity of the vendor-specific configurations and details—i.e., dials, 
as discussed above—that need to be understood and optimized. The complex dials change often 
from one generation to another within the same vendor, and even between vendors, making it 
extremely challenging to develop portable and lasting power management solutions. General 
and advanced users alike do not have access to the low-level tools that are necessary to study 
the carbon footprint of their applications or to systematically explore and evaluate the impact 
of tuning the available vendor-specific dials on their platforms.

Additionally, little research has been conducted in the area of extending the lifetime of existing 
supercomputers and determining opportunities for their reuse and ideal replacement cycles. 
Surprisingly, supercomputers are not always retired due to increased hardware failure rates or 
limited performance on applications, but rather due to the people cost of maintenance and the 
inability of existing tools to manage mixed-hardware well52. Heterogenous hardware is hard to 
manage from the perspective of portability and developer effort, and as such, results in lack of 
productivity for system administrators.

Additionally, it has been shown that running large-scale centers at lower temperatures is 
beneficial from the perspective of CPU and GPU aging and extending their lifetimes. Being able 
to monitor the temperature of machine rooms and proactively (not reactively) lower the thermal 
limits by setting power caps is essential to extend the life of large-scale computing systems.

The vendor-neutral Variorum library offers a crucial solution for each of the aforementioned 
challenges. First, Variorum reduces the complexity associated with vendor-specific and ever-
changing low-level dials by providing a vendor-neutral front-facing API for a diverse set of 
users, making it easy to integrate the tuning mechanism in their application codes. It also 
supports mixed hardware setups and builds easily, as it is designed to be primarily vendor-
neutral. Furthermore, Variorum has the ability to provide temperature monitoring as well as 
power capping interfaces regardless of vendor platform, and it can be integrated with higher-
level system software policies that can dynamically adjust power in response to higher ambient 
temperatures. Accordingly, Variorum is an essential tool for solving the broader power and 
energy management problem in large-scale computing.

As shown in the previous sections, supercomputing systems have tremendous opportunities 
for utilizing power better (e.g., the above example of LLNL’s Quartz supercomputer), for power-
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aware job scheduling (e.g., Flux integrated with Variorum), runtime configuration section (e.g., 
Conductor, Kokkos, and GEOPM integrated with Variorum), as well as saving overall energy costs. 
A vendor-neutral and interoperable PowerStack like the one described earlier, and which relies on 
Variorum, is critical for making these options possible.

B. How does the product operate?

Under the hood, Variorum relies on the specific vendor’s optimization dials and firmware 
to accomplish its front-facing goals of simple interfaces. Each vendor has its own mechanism 
to expose both measurement and control dials, and each vendor has a different set of dials 
available. These dials allow access for power, energy, temperature, clock frequency, and several 
performance counter values such as instructions per cycle or last-level cache misses. Definitions 
of these features vary across vendors and even generations of processors for the same vendor. 
Variorum relies on vendor documentation as well as specific underlying kernel and file system 
interfaces to make the dials accessible.

For server processors commonly used in large-scale distributed computing setups, monitoring 
or measurement is typically accomplished through either MSRs which report values measured 
from hardware, physical sensors on the chip, or file system interfaces that connect to on-chip 
baseboard controller devices that provide relevant data. Measurement granularity (i.e., fidelity of 
data when collected at a high frequency) also varies across vendors, but ranges from 1 millisecond 
to 100 millisecond time scales. Intel CPUs have the most sophisticated and fine granularities, and 
most GPUs have coarser granularities for monitoring values.

The history of controlling power and energy consumption in processors dates back to early 
efforts to increase battery life in laptop computers. Those efforts were codified in 1992 with the 
Advanced Power Management standard (APM), which was quickly supplanted by the Advanced 
Configuration and Power Interface (ACPI) in 1996. When not plugged in, mobile devices could be 
instructed by the operating system to run more slowly, thus consuming less energy. When not 
in use, the devices could enter one of several idle or sleep states, saving even more power at the 
cost of some latency when returning to a useable state.

The next leap forward came for multicore processors with the Intel Nehalem (2008) architecture. 
Until Nehalem, processor power had been limited to what could be safely managed assuming 
all cores were running at the highest CPU clock frequency. Nehalem broke that assumption by 
allowing processor firmware to make opportunistic decisions about maximum frequency. If fewer 
cores were in use, they could run faster (and hotter). If all cores were in use, the maximum speed 
would be set substantially lower. This feature, known as frequency scaling, was mostly invisible 
to the average user. Advanced users with root privileges, however, could now determine whether 
their best performance would come about by effectively scheduling more power on fewer cores 
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or less power on more cores. Enhancements to frequency scaling include dynamic voltage and 
frequency scaling, or DVFS, which is now commonly available via the Linux cpufreq userspace 
governor on all architectures.

Intel’s Sandy Bridge (2011) architecture marks the beginning of modern server processor power 
management. For the first time, users were able to set a specific number of watts as the processor 
power, rather than rely on capping clock frequencies and limiting power as a second-order 
effect. This power-capping approach is now standard in every server processor architecture, 
including GPUs. While a few additional power control approaches have been developed on the 
margins (e.g., throttling memory accesses to reduce dynamic random access memory [DRAM] 
power), the underlying mechanism is the same: allow the user to set a combination of power and 
frequency caps, then allow the processor to make rapid changes to the clock frequency so that, 
over a time window, the average power does not exceed the specified bound.

For controlling power and frequency dials, the following primary mechanisms exist in hardware:

• DVFS (available on all CPU architectures), which we described earlier
• Power capping, through hardware mechanisms such as Running Average Power Limit 

(RAPL, supported on Intel and AMD) or Open Power Abstraction Layer (OPAL, on IBM)
• Automatic hardware tuning of frequencies through Intel Turbo Boost or IBM UltraTurbo

On GPUs, the underlying power capping mechanism is not public but potentially utilizes some 
form of DVFS, and is made available through vendor frameworks and libraries such as NVIDIA 
Management Library (NVML), AMD ROCm, or Intel One API.

Examples of Vendor-Specific Dials

To illustrate the complexity of vendor dials and how they differ from internal interfaces, we 
consider two examples in this paper. Detailed documentation for each vendor exists on our 
ReadTheDocs page.

Each Intel architecture has several MSRs for power, temperature, frequency, and performance 
tuning. Some of these MSRs vary from one generation of Intel processors to another. Some key 
RAPL registers for power management are listed below, along with their hardware addresses 
and read/write or read-only permissions:

• MSR _ PKG _ POWER _ LIMIT, 0x610h, rw: Allows software to set package power 
limits for a given time window

• MSR _ PKG _ ENERGY _ STATUS, 0x611h, ro: Reports measured actual energy usage 
for processor
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• MSR _ PKG _ POWER _ INFO, 0x614h, ro: Reports meta information for processor, 
such as range of valid values

• MSR _ DRAM _ POWER _ LIMIT, 0x618h, rw: Allows software to set memory power 
limits

• MSR _ DRAM _ ENERGY _ STATUS, 0x619h, ro: Reports measured actual energy usage 
for memory

• MSR _ DRAM _ POWER _ INFO, 0x61Ch, ro: Reports the DRAM domain meta information
• IA32 _ APERF _ MSR and IA32 _ MPERF _ MSR, 0xE7h,0xE8h,ro: Define a ratio that 

depicts instantaneous processor frequency

Figure 13 shows the internals of the MSR_PKG_POWER_LIMIT. To set a power cap on an Intel 
CPU architecture, specific bit values corresponding to that power value need to be written to 
the address in this MSR, along with an associated time window, which is also specified in bits. 
Two power limit ranges exist, as shown below, and although the first limit (Pkg Power Limit #1) 
is commonly used to set power caps and is best practice, little to no documentation exists from 
Intel on how the second power limit should be used. Each MSR listed above, and many others, 
have similar details that need to be understood and meticulously calibrated on our testbed 
systems before Variorum can safely deploy them to the general user in a vendor-neutral manner 
with a front-facing API—and this example is limited to just the Intel dials. 

Figure 13: One of the many power management MSRs available on Intel Broadwell architecture.

Figure 14 shows a similar example from the IBM Power9 architecture, which has a primary-
secondary processor chip design (represented by the two On Chip Controller, or OCCs, in the 
top row which connect to the sets of GPUs). This architecture also has a baseboard management 
controller (BMC) in addition to its two compute CPU processors. The “OCC control” resides on the 
BMC (shown in green in the bottom half) and connects to both the primary and secondary chips. 
The OCC has direct access to the system bus and memory, and collects power and thermal data 
every 250 microseconds through sensors. It exposes this through both lm-sensors as well as in-
band sensor channels that Variorum leverages to obtain this information. Power control dials are 
exposed with OPAL, which allows Variorum to write values to sysfs interfaces that interact with 
the OCC controller to enforce power limits on the compute-node level. Variorum abstracts such 
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complex and tedious details away from the users for each platform supported, truly achieving 
ease of access and portability.

 

Figure 14: Internals of an IBM Power9 Witherspoon node, along with the details of the OCC that allows 
for power and thermal management.

Variorum APIs
Through its rich suite of APIs, Variorum abstracts the complexity of the underlying support 
for vendor-neutral power and energy management. The top-level API for Variorum is in the 
variorum.h header file. Key categories of vendor-neutral APIs are provided through Variorum, 
which we describe below:

• Variorum Print Functions
• Variorum Cap Functions, including Best Effort Power Capping
• Variorum JSON-Support Functions
• Variorum Enable/Disable Functions
• Variorum Topology Functions
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For each feature on each architecture, there is a print and print_verbose API, which will print the 
metrics in different output formats. The print API prints the output in tabular format that can 
be filtered and parsed by a data analysis framework, such as R or Python. The print_verbose API 
prints the output in verbose format that is more human-readable (e.g., with units, titles). Some 
examples of supported APIs include:

• variorum _ print _ power

• variorum _ print _ thermals

• variorum _ print _ counters

• variorum _ print _ frequency

• variorum _ print _ features

• variorum _ print _ gpu _ utilization

• variorum _ print _ energy

Variorum Cap APIs are designed to tune dials and set various power and frequency options 
available on the architecture. Some examples of capping APIs include the following. Note that 
input values have to be provided by the users or the system software that is integrating with 
Variorum. Variorum checks for valid inputs in all cases and generates a meaningful error message 
in case the input values are incorrect.

• int variorum _ cap _ each _ socket _ power _ limit(int socket _ power _

limit)

• int variorum _ cap _ gpu _ power _ ratio(int gpu _ power _ ratio)

• int variorum _ cap _ each _ core _ frequency _ limit(int cpu _ freq _ mhz)

• int variorum _ cap _ best _ effort _ node _ power _ limit(int node _

power _ limit)

The capping API, variorum _ cap _ best _ effort _ node _ power _ limit, is a special 
API. Because vendor dials for power capping vary and can cause portability issues, this API is 
designed to support setting of best-effort node power limits in a vendor-neutral manner. This 
interface has been developed for higher-level tools that utilize Variorum on diverse architectures 
and need to make node-level decisions. When the underlying hardware does not directly support 
a node-level power cap, a best-effort power cap is determined in software to provide an easier 
interface for higher level tools (e.g., Flux, Kokkos). For example, while IBM Witherspoon inherently 
provides the ability to set a node-level power cap in watts through its OPAL infrastructure, Intel 
architectures currently do not support a direct node-level power cap through MSRs. Instead, on 
Intel architectures, fine-grained CPU and DRAM level power caps can be dialed in using MSRs. 
Note that IBM Witherspoon does not provide fine-grained capping for CPU and DRAM level, but 
allows for a power-shifting ratio between the CPU and GPU components on a processor. Our 
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API, variorum _ cap _ best _ effort _ node _ power _ limit(), allows us to set a best effort 
power cap on Intel architectures by uniformly distributing the input power cap value across 
sockets as CPU power caps. 

Variorum’s JSON APIs are designed for interfacing with system software and user workflows in 
a vendor-neutral manner and enable language-independent bindings. JSON is a widely-used, 
open standard text-based format for storing and transporting data. It is human-readable, low 
overhead, and language-independent, allowing it to be portable across C, C++, Python and other 
languages. JSON also allows for easy integration with system software such as Flux, Caliper, 
Kokkos, and LDMS. Having a JSON API is a key feature of Variorum, as not many low-level libraries 
provide such an interface. Currently, two significant JSON APIs are supported, which have been 
crucial for all the integrations we discussed in the previous sections (e.g., Flux, Kokkos, Caliper, 
LDMS):

• int variorum _ get _ node _ power _ json(char **get _ power _ obj _ str)

• int variorum _ get _ node _ power _ domain _ info _ json(char **get _

domain _ obj _ str)

The first JSON API to obtain node power uses a string (char**) by reference as input, then 
populates this string with a JSON object with CPU, memory, GPU (when available), and total node 
power. The total node power is estimated as a summation of available domains if it is not directly 
reported by the underlying architecture (e.g., as is the case with Intel).

The variorum_get_node_power_json(char**) includes a string-type JSON object with the 
following keys, which make it vendor-neutral:

• hostname (string value)

• timestamp (integer value)

• power _ node (real value)

• power _ cpu _ watts _ socket* (real value)

• power _ mem _ watts _ socket* (real value)

• power _ gpu _ watts _ socket* (real value)

The asterisk refers to Socket ID. On Intel microarchitectures, total node power is not reported by 
hardware. As a result, total node power is estimated by adding CPU and DRAM power on both 
sockets. On systems without GPUs, or systems without memory power information, the value of 
the JSON fields is currently set to -1.0 to indicate that the GPU power or memory power cannot be 
measured directly. This has been done to ensure that the JSON object itself stays vendor-neutral.
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The second JSON API for querying power domains allows users to query Variorum to obtain 
information about domains that can be measured and controlled on a certain architecture. 
This API also includes information about the units of measurement and control, as well as the 
minimum and maximum values for setting the controls. If a certain domain is unsupported, it is 
marked as such.

The query API, variorum _ get _ node _ power _ domain _ info _ json(char**), accepts a 
string by reference and includes the following vendor-neutral keys:

• hostname (string value)

• timestamp (integer value)

• measurement (comma-separated string value)

• control (comma-separated string value)

• unsupported (comma-separated string value)

• measurement _ units (comma-separated string value)

• control _ units (comma-separated string value)

• control _ range (comma-separated string value)

The Variorum Enable/Disable APIs support enabling and disabling of features such as TurboBoost, 
which are frequency boosting options that are available on selected devices. The Topology APIs 
allow users to query basic information about the compute node, such as its total cores or sockets. 
All APIs are well documented on our ReadTheDocs page.

Automatic Detection of Topology and Mapping of Power Domains

As system heterogeneity continues to be the de-facto mechanism to achieve Exascale 
performance, the task of enumerating the power domains on the system and breaking down 
power information on each device and component on a compute node is becoming non-trivial. 
Variorum simplifies this process of discovering, mapping and translating the high-level power 
control and telemetry information for the target system. For each supported API call that the 
user invokes, Variorum first performs an enumeration of the underlying supported devices on 
the target system. For this task, Variorum leverages existing device enumeration library hwloc54 
to collect device-level topology including CPU cores, GPU, memory and other peripheral devices. 
For each available device, Variorum uses the low-level domain discovery APIs to enumerate the 
power domain information. For high-level power control APIs, Variorum then uses the input 
control information to derive and apply control information for each enumerated device on the 
system using their respective low-level control interfaces. For high-level telemetry APIs, Variorum 
aggregates the telemetry collected on the individual devices using low-level telemetry interfaces 
on the supported devices. 
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Non-Intrusive Monitoring

Although the Variorum API allows for detailed critical path analysis of an application’s power 
profile through source-code annotations as well as for integration with system software (e.g., 
Kokkos, Caliper, LDMS, Flux), in some scenarios such code annotations or integrations are 
not possible because the underlying codebase cannot be modified by the user due to limited 
permissions and users may not have permissions to link an external library. Accordingly, we 
provide the powmon monitoring tool along with the regular Variorum build. This tool can monitor 
an application externally and non-intrusively without requiring any code changes or annotations 
and collect power and performance data in a vendor-neutral manner. While a target application 
executable is running, powmon collects time samples of power usage, power limits, energy, 
thermals, and other performance counters at a regular interval. 

For example, the command below will sample the power usage every 50 milliseconds for the 
application userapp, an executable application file specified by the user. The tool can also be 
used for collecting data on multiple nodes as well. It generates a standard comma-separated-
value (CSV) file with the collected power and performance data as its output, that the user can 
utilize for analyzing the application. 

$ powmon -a ./userapp

Language Bindings and Wrappers

In addition to C/C++ annotations, Variorum also supports Fortran and Python APIs. The Fortran 
wrapper is only built and installed if Fortran is found and enabled. For the Python module 
(called pyVariorum), a simple pip based install or setting of PYTHONPATH is needed. Examples 
of the usage of these wrappers are well documented so users can easily add these to their 
codebases. These bindings allow users to integrate Variorum’s API into their Fortran and Python 
applications easily.

Continuous Integration and Testing Framework

Variorum code is regularly tested on a diverse set of architectures, including several Intel 
platforms (e.g., Broadwell, Haswell, Skylake, Ice Lake), IBM Power 9, ARM Juno r2 and Neoverse, 
NVIDIA Volta GPUs, and AMD Instinct GPUs. Variorum’s unit tests are run externally on GitHub, 
as well as internally on LLNL’s Livermore Computing clusters through GitLab. Within one of 
our GitLab continuous integration (CI) processes, we are also leveraging Ansible to expand 
our testing across an additional set of hardware architectures. These systems require specific 
requests and permissions to gain access. As part of Variorum’s CI testing, we cover the following 
to ensure that Variorum source code stays error-free and compatible across various platforms:
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• Verifying compliance of code format for C/C++, RST, and Python files
• Building Variorum with different versions of gcc compiler
• Building Variorum with different CMake build options and the Spack package manager
• Running Variorum’s unit tests and examples (e.g., make test and variorum-print-

power-example)

Applicability, User Base, and Contributors

Actively developed since 2017, Variorum is licensed as open-source software and accessible 
through LLNL’s GitHub organization. Since the first production release (v0.1) in November 2019, 
Variorum has come a long way with new features and expanded vendor accommodations. 
The next version (v0.7, to be released in June 2023) is ready for production use on existing 
supercomputers, and will support all three upcoming U.S. exascale supercomputers (El Capitan 
at LLNL, Aurora at Argonne National Laboratory, and Frontier at Oak Ridge National Laboratory) 
and many other HPC systems. This version has also been integrated into the Tri-Lab Operating 
System Stack (TOSS), which is installed on many of the supercomputers at LLNL, Sandia, and Los 
Alamos national laboratories.

Variorum fills a gap in HPC users’ and system software developers’ access to power and 
performance management dials across vendors. It is the only vendor-neutral framework that 
does so while ensuring safe access in a production environment. Variorum covers a broad 
swath of users and use cases with its current support for multiple CPU microarchitectures and 
GPUs across AMD, ARM, IBM, Intel, and NVIDIA platforms, and multiple generations within each 
platform (see Variorum’s documentation for the complete list).

Variorum appeals to a wide user base beyond researchers and application code teams, including 
system administrators of large-scale HPC clusters and system software developers, with potential 
to also benefit cloud computing and edge computing users. Variorum is designed for writing 
portable power management code in a vendor-neutral manner, and its user-friendly interface 
allows for easy integration for many use cases (e.g., power-aware resource management, 
application performance optimization under power bounds, energy accounting). Variorum users 
need not know any of the complex, low-level details about power or energy management across 
different vendor platforms.

Variorum benefits from contributors across industry, national laboratories, and academia, 
such as Argonne National Laboratory, AMD, IBM, Intel, ARM, NVIDIA, among others. An active 
list of Variorum contributors is maintained on a ReadTheDocs page. To actively support the 
open-source community, the Variorum development team (see Figure 15) regularly organizes 
workshops, tutorials, and presentations. Our documentation website also provides users with 
instructions and examples for easy access.
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Figure 15: The Variorum development team is based at LLNL and regularly engages  
with the project’s user community.

C. Product comparison

A wealth of performance monitoring and collection tools have been developed in the HPC community to 
provide insight into application execution behaviors. Performance tools cover a wide range of granularities 
in the data they collect and present to the user, and gathering execution behaviors enables us to optimize 
the application for the target architecture and achieve the best performance. Performance tools cover a 
wide range of granularities in the data they collect and present to the user. Users can manually instrument 
specific regions of interests in their applications with tools such as Performance API (PAPI)1, Perf2, TAU3, 

4, 5, and Caliper6. Tools such as Vampir7, Jumpshot8, and Score-P9 enable post-execution analyses of per-
thread traces. Following execution, a trace detailing per-thread execution behaviors is produced for post-
hoc analyses using one of the analysis tools integrated into TAU, such as Vampir7, Jumpshot8 or Score-P9.
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On the other hand, tools such as LDMS10 and Redfish11 gather information about system resource 
utilization. Users can specify metrics and events to collect and the frequency at which to collect 
them. System administrators use the system-wide performance metrics to avoid security issues. 
Information gathered here is limited to the metrics configured by the tool itself—meaning, these 
tools do not provide a mechanism for users to self-configure counters to collect different metrics.

TAU3,4,5, is a large-scale project for profiling applications in myriad ways, such as direct 
instrumentation of user functions and event-based sampling. It offers several ways of presenting 
the collected data, which can be very good for ttributing data to code regions. TAU has been 
ported to many other existing performance tools, which provide specific information about 
the application’s behavior. However, TAU’s capability is limited to the extent that these ported 
tools support the underlying features and architectures, and TAU does not support any control 
operations (such as setting power or frequency) or higher-level integration APIs. 

Libpfm55 is an open-source helper library used by applications to obtain specific performance 
monitoring events that are provided by the hardware or the OS kernel, including hardware 
performance counters such as elapsed cycles or cache misses. The library provides two key 
features: first, it provides an event listing and query interface that can be used to discover the 
events available on a specific hardware platform. It also provides a set of functions to obtain 
event data and a generic API to specific kernel APIs such as perf _ events. It supports a rich set 
of architectures, platforms and hardware features, but does not have a user-friendly interface or 
any software tool integration APIs.

PlatformIO56 is an open-source low-level library that has been designed by Intel Corporation 
primarily to support its GEOPM runtime system, and is intended to be vendor agnostic. Currently, 
it supports a multitude of low-level dials from Intel architectures, and also some from IBM and 
NVIDIA architectures. It has however not been designed from a general user’s perspective and 
requires an expert user for its interfaces. 

Libmsr11 and msr-safe12, 13, 14 synergistically provide user space access to traditionally privileged-
only hardware features and controls on Intel systems. The msr-safe kernel module provides a 
mechanism for users to access MSRs without exposing security risks. System administrators 
select which registers to whitelist and the specific bits that are safe to access, if applicable 
(some registers are read-only). The libmsr API calls check for the presence of msr-safe before 
performing read/write operations on registers, but the libmsr library is Intel-specific and not 
vendor-neutral. Variorum internally makes use of msr-safe kernel module for providing safe 
access to MSRs that require elevated permissions for its implementation relevant to the Intel 
platform.
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Both GEOPM15, a production-grade runtime framework developed at Intel, and LIKWID16, a 
lightweight set of command-line tools targeting x86 architectures, have a dependency on the 
msr-safe kernel module. Recently, PAPI added support for power and energy usage through 
Intel’s RAPL17 and NVIDIA’s NVML18. As PAPI is integrated into other tools, users will also 
have access to the additional data that PAPI provides. However, accessing power and energy 
information requires a specific install of PAPI with elevated access, which is not configured on 
every system.

Power API19 detects the system hierarchy and provides standard interfaces for hardware 
vendors to comply with when providing monitoring and control interfaces specifically for power 
and energy. Current support is available for very limited devices such as a single generation 
of Intel and AMD processors, Power Insight, WattsUp, generic CPU registers, and Cray’s XTPM. 
Additionally, in order to use the Intel RAPL plugin, the user must have privileged access to the 
stock MSR driver, which Variorum resolves.

D. Comparison summary

As mentioned in the previous section, while many performance monitoring and tracing tools 
exist, they do not offer a rich set of APIs for control and capping of power or frequencies, or 
APIs for thermal information, or a set of JSON APIs for integrating with higher levels in the stack. 
Some of them are not vendor-neutral. For our comparison table, we compare only with the 
most sophisticated and mature node-level libraries/paradigms that are available, to allow for 
meaningful comparison. 

We depict two comparison matrices, one for hardware feature support on various vendor 
architectures and associated upcoming exascale systems, and another for software features. 
Both these feature sets are important from a user’s perspective. The hardware features allow 
users to port their code to a diverse set of CPUs, GPUs and upcoming exascale systems. The 
software features make this access easy-to-use, portable, and allow for critical integrations such 
as those with monitoring frameworks and resource managers. Table 1 shows the Hardware 
Feature Comparison Matrix and Table 2 shows the Software Feature Comparison Matrix. 

For Table 1, we consider three other major low-level libraries that are widely used in the 
community: PAPI, PlatformIO and Libpfm, which we have described previously. PAPI and Libpfm 
support many vendor architectures and have a robust set of monitoring APIs, and have been 
integrated into monitoring tools such as Caliper. However, they both have very limited support 
for any capping APIs (such as power or frequency capping) or enable/disable APIs. PAPI only 
supports these on Intel CPUs, and Libpfm does not support them at all. These APIs are extremely 
important for dynamic power management, without them, power cannot be redistributed or 
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reallocated. PlatformIO on the other hand has support for both power capping and frequency 
capping, but it supports fewer vendors as it is designed by Intel. We summarize these differences 
in Table 1, where we show each vendor platform, their CPU/GPU options, as well as upcoming 
exascale system readiness. The Aurora system at Argonne National Laboratory is an Intel-
architecture based system, and the Frontier and El Capitan systems at Oak Ridge National 
Laboratory and Lawrence Livermore National Laboratory are AMD-architecture based systems. 
Overall, Variorum supports many hardware features and offers a wider coverage to the users. 

Table 1: Hardware Feature Comparison Matrix

In Table 2, we consider the above three libraries, and we also consider PowerAPI here for 
completeness. PowerAPI has been designed to be a user-friendly and end-to-end system API, 
and is an attempt to standardize low-level interface operations across vendors. Its hardware 
feature set is extremely limited, and only supports previous generations (from 3–5 years ago) 
of vendor architectures,  as we discussed in the related work section, even though there are 
plans for adding more hardware features. Its software feature set is worth considering in our 
comparison due to its rich set of user-friendly APIs. In our software feature set, we consider 
user-friendliness, language bindings, and integrations with system software such as resource 
managers, runtime systems and monitoring frameworks. Another important feature we consider 
is support for Message Passing Interface (MPI) versus non-API science applications. Traditional 
HPC applications use MPI, but this trend has been rapidly changing with ML workflows and 
simulations that accomplish science without relying on MPI. Being able to support both types of 
applications is crucial for upcoming supercomputers as well as data centers. 

PAPI and PlatformIO support a wide set of software features. While PAPI is user friendly, it cannot 
be integrated into dynamic power management runtime systems due to the lack of rich capping 
APIs. It is typically used at the application level, and has not been integrated into resource 
managers. Platform IO provides both runtime system and resource management integrations 
(the latter is a bit limited) but it does not have a set of user-friendly APIs and needs an expert 
user. Overall, we find that Variorum offers the best set of software features among these. 
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Table 2: Software Feature Comparison Matrix

Product Limitations

Variorum’s current version (v7.0) has a few limitations. One limitation comes from the challenge 
of estimating node-level power usage and enforcing vendor-neutral, node-level power caps on 
platforms that do not support such capping in hardware. To address this challenge, Variorum 
has introduced the vendor-neutral Best Effort Node Power Capping API (discussed above), which 
allows for an estimate-based power capping as opposed to the one inherently supported by the 
underlying hardware. This Best Effort Node Power Capping API works well in practice and can 
be easily integrated into system software, but its current capability is limited on platforms that 
lack native hardware-based node-level capping support (e.g., Intel). This is because enforcing 
a software-level best-effort power cap requires us to estimate how much power is being 
consumed by the application, necessitating a sophisticated mathematical and analytical model 
of the underlying architecture that accommodates for components such as individual cores, 
memory, connectors, and those in other areas outside the processing core. Such models are 
complex to develop and are unlikely to be portable, so we make simplifying assumptions in 
our API implementation. For example, we currently do not use memory power caps through 
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the best-effort node power capping mechanism on Intel systems. We plan to develop better 
techniques for best-effort software capping in the future.

Another limitation is in the powmon tool, which, in its current form, supports two modes: one that 
exports instantaneous power usage values (through the JSON APIs), and another that exports 
data from all possible counters (selected through MSRs on Intel) or sensors (on IBM) or dials. 
The latter mode generates a comprehensive and sophisticated dataset, but results in a verbose 
trace file. Additionally, this second mode is targeted at the advanced user who understands the 
nuances of each of the values in that dataset. Future work involves adding another novel mode 
to powmon that allows users to specify which counters or sensors they want to collect data from. 
Accordingly, the general user would be able to select the data of interest to their use case, while 
the advanced user would still access the comprehensive and sophisticated dataset. We expect to 
address both of these enhancements in upcoming Variorum releases.

A third limitation occurs when some features are not supported by the underlying vendor, 
requiring Variorum to exit with a graceful error message about the unavailable feature. This 
occurs due to physical hardware limitations and lack of support for certain features. For example, 
boost frequency options such as TurboBoost are not available on any server (non-gaming) GPUs, 
and are not exposed easily by GPU manufacturers. If a new user unaware of this detail tries to 
access an API such as variorum _ enable _ turbo on a GPU device, an error message tells 
them that the feature is not supported on the device. This type of limitation is beyond the control 
of the Variorum’s development team, and we mitigate these situations by providing thorough 
documentation on dials, as well as by answering queries users submit through GitHub issues. 

4. SUMMARY

Power and energy efficiency are key design constraints for large-scale distributed computing in 
terms of both monetary and environmental cost. Optimizing power and energy at large scale 
requires fine tuning of obscure, complex, and often poorly documented low-level options, or 
“dials”—an extreme challenge for users. The open-source and extensible Variorum software 
library provides a rich suite of APIs that deliver portable, homogeneous, easy-to-use, and vendor-
neutral interfaces for these low-level dials that are critical for HPC power and performance 
optimization. With Variorum, application scientists, system administrators, and researchers 
alike can tune these dials through a common, user-friendly interface without needing to know 
a vendor’s specific implementation details. Variorum provides robust interfaces that allow 
measurement and optimization of computation at the physical level: temperature, cycles, energy, 
and power. With that foundation, scientists and HPC centers can make the best possible use of 
their computing resources—from purchasing to runtime systems to job scheduling, and ranging 
from bare-metal cloud instances to the some of the world’s fastest supercomputers.
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Documentation (up to three):
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• User documentation: https://variorum.readthedocs.io/en/latest/
• Open-source code: https://github.com/LLNL/variorum
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Support letters are combined in a separate PDF file:

• Brad McCredie, Advanced Micro Devices, Inc.
• Michael A. Heroux, U.S. DOE Exascale Computing Project
• Natalie Bates, Energy Efficient HPC Working Group
• Martin Schulz, Leibniz Supercomputing Centre

7. AFFIRMATION

I/we certify that all of the information within this submission entry is accurate and represents 
the most up-to-date information available for this entry.

Tapasya Patki, LLNL               May 30, 2023
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