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Fast, Accurate Data Compression for 
Modern Supercomputing Applications  

1. PRODUCT/SERVICES CATEGORIES

A. Title

zfp v1.0.0

B. Product category

Software/Services 

2. R&D 100 PRODUCT/SERVICE DETAILS

A. Primary submitting organization 

Lawrence Livermore National Laboratory

B. Co-developing organization 

n/a

C. Product brand name

zfp
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D. Product introduction 

This product was introduced to the market between January 1, 2022, and March 
31, 2023. This product is not subject to regulatory approval. zfp version 1.0.0 was 
released on August 1, 2022.

E. Price in U.S. Dollars

Free. zfp is open source and free to users.

 
F. Short description 

The zfp software library provides a comprehensive solution to both lossy and 
lossless data compression. zfp reduces the storage space of high-precision 
floating-point data without sacrificing accuracy. It was designed to be a 
compact number format for storing data arrays in-memory in compressed 
form while supporting high-speed random access.

G. Type of institution represented

Government or Independent Lab/Institute 

H. Submitter’s relationship to product

Product developer

I. Photo

J. Video

youtu.be/09Jl2ggiDuY

zfp product information, documentation, and other 
details are available at zfp.llnl.gov.

http://www.llnl.gov
mailto:info@llnl.gov
http://youtu.be/09Jl2ggiDuY
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3. PRODUCT/SERVICE DESCRIPTION

A. What does the product or technology do?

zfp [Lin14] is a new compressed number format for floating-point and integer arrays 
intended to reduce in-memory and offline storage and transfer time of large data 
sets that arise in high-performance computing (HPC). zfp effectively expands available 
CPU and GPU memory by as much as 10x; reduces offline storage by one to two 
orders of magnitude; and—by reducing data volumes—speeds up data movement 
between memory and disk, distributed compute nodes, CPU and GPU memory, and 
even main memory and CPU registers. Such reductions in data movement are critical 
to today’s HPC applications, whose performance is largely limited by data movement 
rather than compute power [SDM10, RD15].

Contrary to competing compressed formats designed for file storage, a unique 
feature of zfp is that it supports high-speed, constant-time random access to array 
elements—both for read and write operations—suitable also for in-memory storage. 
This capability allows applications to work with zfp arrays as though they were 
uncompressed and to substitute bulky floating-point arrays in the ubiquitous IEEE-
754 format [Std19] with lean zfp arrays with few code changes. Although zfp supports 
lossless compression to ensure values are preserved exactly bit for bit, its primary 
use case is lossy compression, where small but usually negligible numerical errors 
are introduced to significantly boost compression levels. While such errors may at 
first seem alarming , similar rounding errors in fact occur in virtually every arithmetic 
operation that uses finite-precision floating-point arithmetic. In comparison with 
IEEE-754, zfp increases accuracy per bit stored and supports user-specified error 
tolerances, allowing numerical errors to be controlled while simultaneously reducing 
storage and data movement.

zfp provides C and C++ multidimensional array implementations for in-memory 
storage and an application programming interface (API) for compressing and 
decompressing entire floating-point arrays, e.g., for offline storage and data transfer. 
By decomposing array data into small blocks of numbers that are compressed 
independently, zfp enables massive data parallelism to speed up (de)compression 
on multicore CPU and GPU devices. zfp supports several back ends—serial, OpenMP, 
CUDA, and HIP—and programming languages—C, C++, Python, and Fortran—with 
additional back ends and language bindings available through third parties. The 
zfp software library is available as open source on GitHub under a permissive BSD 
license, as is its zhw field programmable gate array (FPGA) hardware implementation.

http://www.llnl.gov
mailto:info@llnl.gov
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Compression Errors

Unlike the majority of today’s lossy file compressors [ATW+18, BLP20, DC16, LI06, 
LLC23], quite a bit is known about the numerical errors introduced by zfp’s lossy 
compression modes. For instance, it is known that the zfp error distributions are 
essentially normal (or Gaussian), but with finite support (i.e., errors are bounded) 
due to the mixing of uniform roundoff errors that occur in its decorrelating 
transform (see below) and the central limit theorem [Lin17]. This normality is 
attractive as it allows a user to reason about the propagation of such errors; e.g., 
the sum of two normal random variables is also normal. Moreover, the errors can 
be shown to be unbiased and uncorrelated [HBP+19], which is important in many 
physics applications to ensure conservation of mass, energy, and momentum, and 
in statistics.

Absolute error bounds for zfp compressed data have been established [DFH+19], 
which allow scientists to set an acceptable error tolerance wherein zfp reduces the 
data as much as possible while respecting the tolerance. While such error bounds 
are starting to become commonplace for lossy numerical compressors [ATW+18, 
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Figure 1: When zfp is the primary representation of the evolving solution in a PDE solver, compression errors 
are introduced in each time step. Such errors could potentially accumulate over time and cause the solution 
to blow up. The zfp team has established error bounds not just for a single application of compression 
but for the cumulative error over time in iterative solvers. This allows scientists to choose an appropriate 
compression ratio with the assurance that compression errors are far below other sources of error.

http://www.llnl.gov
mailto:info@llnl.gov
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DC16, LLC23], bounds usually exist only for a single application of compression, as 
these compressors are primarily designed for compressing a given data set only 
once for offline storage. zfp, on the other hand, is designed not only to compress 
numerical data but also to serve as an in-memory substitute for traditional 
floating-point numbers. As such, compression errors are introduced each time 
a piece of data is compressed, or converted to the zfp format. This is of particular 
concern in iterative computations, e.g., partial differential equation (PDE) solvers, 
that use zfp to store the evolving solution. In such scenarios, compression errors 
are incurred in each iteration (or time step) and may in principle cascade (Figure 1). 
Iterative error bounds [FDH+20], which are known only for zfp, provide guarantees 
that errors do not grow uncontrollably over time and eventually “blow up.”

An important stress case for lossy compressors and other reduced-precision 
representations is how numerical errors are magnified in “poorly conditioned” 
operations, such as when estimating spatial derivatives using finite differences 
in PDEs. By analyzing the zfp back-end encoding scheme, one can show that in 
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Figure 2: Rate of convergence of finite-difference derivative error as a function of grid spacing for 
conventional IEEE floating point (FP32, FP64) and zfp at 28-bit storage. The total error plotted is 
the sum of truncation error, which decreases with finer grids, and roundoff error, which increases 
with finer grids. zfp also incurs compression error (another form of roundoff error). Unlike standard 
number formats, zfp’s compression error decreases with finer grids and would surpass FP64 if zfp were 
not first converted to FP64 for computing the finite-difference derivative estimate. At 28 bits, zfp is up 
to 500 million times more accurate than 32-bit floating point.

http://www.llnl.gov
mailto:info@llnl.gov
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d dimensions, the compression error in the nth derivative asymptotically follows 
O(h3d(2-1-4-d)-n)  as the grid spacing h approaches zero, or roughly O(h4.36-n) in three 
dimensions (Figure 2). In other words, derivative accuracy increases rather than 
decreases with finer grids using zfp, a behavior opposite that of traditional floating-
point formats. In fact, zfp accuracy would surpass even double precision (FP64) if 
zfp were not first converted to FP64 for computing the finite-difference derivative 
estimate. We have shown that such computations can be performed directly on 
the partially decompressed zfp format, further reducing errors [Lin19]. These are 
strong arguments for adopting zfp in PDEs, where double precision is often needed 
to combat excessive rounding errors associated with single (FP32) and half (FP16) 
precision. The accompanying video (youtu.be/09Jl2ggiDuY) illustrates how computing 
on 12-bit zfp gives qualitatively identical results to computing at full 64-bit precision, 
while conventional 32-bit floating-point precision is insufficient.

This result is significant: a more than 5x reduction using zfp can be achieved with no 
change to the underlying application algorithm. In contrast, substantial R&D has been 
invested in mixed-precision algorithms [AAB+21] using FP16 and FP32 types (for 4x 
and 2x reduction, respectively), which in addition to explicit type declarations and 
conversions usually require special “tricks” such as careful rescaling to avoid over- and 
underflow (due to reduced dynamic range; zfp retains the full dynamic range of FP64), 
extra passes of iterative refinement, and targeting special hardware like tensor cores—
all of which demand nontrivial changes to the algorithm and implementation.

Another important benefit of zfp is that it supports fine bit rate selection and, thus, a 
very flexible storage size. Per-value storage can be specified by the user in increments 
as fine as 1/32 bit. This feature effectively provides a continuous precision dial that 
avoids the dichotomy of the user’s having to select among three discrete storage sizes 
(16, 32, and 64 bits) and distinct types using standard floating-point formats.

Compression Speed

One important consideration, especially for accelerating data movement via 
compression, is the speed of compression and decompression. That is, to realize a 
net performance gain in data transfers, the total time spent on compression (by the 
sender), transfer of compressed data, and decompression (by the receiver) must 
not exceed the time needed to transfer the data uncompressed. As documented 
extensively through numerous publications [LLH+18, LDT+19, NVB+20, LLC23, 
UBK+23], zfp is one of if not the fastest lossy numerical compressor available. The zfp 
CUDA-based GPU implementation achieves up to 700 GB/s throughput in compression 
and decompression, as shown in Figure 3. This is substantially faster than the 
throughput of I/O, supercomputer interconnects, and PCI Express for channeling data 

http://www.llnl.gov
mailto:info@llnl.gov
http://youtu.be/09Jl2ggiDuY
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between CPU and GPU. Several success stories of using zfp to accelerate I/O [LCL16, 
TBP+21], communication [ZCK+21, ZKA+22, RZS+22], and CPU–GPU transfers [BAO19, 
NVB+20] have demonstrated speedups of up to 40x, 6x, and 2.2x, respectively.

The relative simplicity and efficiency of the zfp compression scheme has made it a 
candidate for implementation in HPC hardware, where one can entirely eliminate 
some operations not readily available in today’s CPU instruction sets. For example, 
transposing a bit matrix—one of the costliest steps in zfp—requires repeated data 
accesses and/or a large register file to hold intermediate results, but is done “instantly” 
in hardware via custom wiring. Moreover, a hardware implementation can more easily 
support fine-grained parallelism than one written in software, which reduces latency 
and boosts overall throughput. For these reasons, several independent research teams 
have developed FPGA hardware implementations of zfp as a step toward on-chip 
compression [SJ19, SKJ20, HEE+22, LJ22, SKJ22, BWL+22], each with slight variations to 
further improve performance.

Community Impact

zfp is recognized as one of the leading solutions for numerical data compression and 
has consequently seen widespread adoption in industry, academia, and national 

Figure 3: zfp compression throughput on three generations of NVIDIA GPUs. Throughput varies with bit 
rate as compression time is linear in the number of bits output.
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labs. With over 1.5 million measurable downloads per year (from GitHub, Anaconda, 
and PyPI), the following features are largely responsible for zfp’s impact and rapid 
adoption:

• Provides unique features like random access, prescribed and guaranteed 
memory footprint, and fine-grained access not supported by other 
compressors (see comparison matrix on p.19).

• Is very effective at compressing data, competing with best of breed.

• Is the fastest floating-point compressor available.

• Is highly parallelizable by design.

• Has attractive error properties and error guarantees not available through 
other compressors.

• Provides C, C++, Python, and Fortran bindings, with other language bindings 
available through third parties (Rust, Julia, and WebAssembly, in particular).

• Supports numerous back ends, including serial, OpenMP, CUDA, and HIP, 
with additional implementations by Intel (for AVX support) and NEC (for their 
TSUBASA vector engine). Additionally, several FPGA hardware implementations 
have been published.

• Relies on best-practices software development using continuous integration 
and deployment; supports CMake and GNU make as build systems; is 
rigorously tested using more than 5,000 unit and functional tests; and employs 
code coverage analysis.

• Is well documented online via ReadTheDocs, with complete API documentation, 
tutorials, code examples, FAQ, and installation and troubleshooting guides. 
Searchable documentation exceeds 200 PDF pages.

• Is production ready with reliable performance and portability. zfp runs and is 
continuously tested on Linux, macOS, and Windows. It conforms to C89 and 
C++98 language standards and has been built with numerous compilers (gcc, 
clang, Intel, XLC, PGI, MSVC, MingGW).

• Is easy to install and widely available through an array of package managers, 
including Spack, Anaconda, Pip, Linux RPM, and MacPorts.

http://www.llnl.gov
mailto:info@llnl.gov
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• Is open source and freely available through a permissive BSD license.

As a self-contained software library with no dependencies on other software, zfp’s 
impact can in part be measured through adoption by customers in other high-impact 
commercial and academic applications. A few example applications that support zfp 
include:

• ADIOS, a high-performance I/O library and past R&D 100 winner.

• BLOSC, one of the best-known frameworks for data compression.

• HDF5®, perhaps the most ubiquitous file format for science data. zfp is one of 
only a handful of compressors shipped with HDF5® binaries.

• Intel® Integrated Performance Primitives and Intel® oneDTL.

• MVAPICH2, one of the leading MPI implementations of message passing.

• Open Inventor™, a commercial 3D visualization toolkit. 

• OpenZGY, Schlumberger’s open-source compressed format for seismic data 
based on the SEG-Y industry standard in the oil and gas industry. This format is 
based solely on zfp.

• VTK-m, Kitware’s high-performance visualization library.

• Zarr, one of the leading libraries for compressed array storage and an HDF5 
competitor.

Among these applications, only ADIOS supports any of zfp’s competitors (discussed 
further below). Numerous other examples of zfp customers are listed on the zfp 
homepage (zfp.llnl.gov).

http://www.llnl.gov
mailto:info@llnl.gov
https://zfp.llnl.gov
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B. How does the product operate? 

zfp was inspired by texture compression formats [BAC96] designed for RGB images, 
which have long had hardware support on GPUs and mobile devices. Like zfp, 
such formats partition images into small blocks (usually 4x4 pixels), each of which 
is compressed to a fixed number of bits. This so-called “fixed-rate compression” 
setup allows blocks to be quickly retrieved and decompressed on demand via 
random access. Unlike texture compression, which may spend a large amount 
of time optimizing the compression process to support fast read-only access, zfp 
performance is symmetric for compression and decompression, with read and 
write accesses being equally fast. zfp also has been designed for high-precision 
numerical data common in HPC, e.g., in PDEs, and supports 1D–4D integer and 
floating-point arrays.

zfp exploits redundancy between numbers in conventional floating-point arrays, 
which for science and engineering applications tend to vary slowly with array index. 
For example, in gridded scalar fields that represent physical quantities, such as 
temperature and pressure in a weather model, values at adjacent grid points tend 
to be highly correlated. Such slow variations often cause nearby values to share 
the same floating-point exponent as well as several leading value bits. zfp removes 
such redundancy in exponents using a block-floating-point representation, where 
the 4d values of a d-dimensional block are expressed relative to a single common 
exponent. Redundancy in leading value bits is subsequently removed using a 
linear decorrelating transform similar to the discrete cosine transform used in JPEG 
image compression [Wal92]. This step, when followed by an integer conversion to 
“negabinary” (base –2), replaces without loss common leading bits with zero-bits, 
which can be compressed efficiently. The custom transform used by zfp is very 
efficient and involves only 5 integer additions and subtractions each and 6 bit-
shifts, compared to 16 multiplications and 12 additions for a naïve implementation. 
The final step losslessly encodes the transform coefficients by bit plane, from the 
most to least significant bit, and outputs a variable-length bit string whose length 
depends on how compressible the data is. The bit string can be truncated to any 
number of bits, e.g., to meet a fixed storage budget or requested error tolerance. 
This discarding of least significant bits is equivalent to rounding that already 
occurs in floating-point arithmetic and is the primary source of loss in accuracy. 
As with floating-point rounding, bit string truncation introduces a predictable and 
controllable level of error.

The selected zfp “compression mode” determines how bit strings are truncated. 
In fixed-rate mode, the user specifies an exact storage size by fixing the number of 
compressed bits to use per block. In fixed-precision mode, zfp transform coefficients 

http://www.llnl.gov
mailto:info@llnl.gov
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are encoded to a given number of bits of precision with the remaining bits zeroed, 
which results in variable-length storage. In fixed-accuracy mode, the user specifies 
an absolute error tolerance from which values may not deviate. In this use case, the 
number of bits of precision needed for coefficients is dictated by the value of the 
common block exponent relative to the error tolerance. Finally, zfp also supports a 
lossless compression mode that leaves the bit string at its full length and ensures all 
remaining algorithmic steps in zfp are fully reversible.

zfp provides C++ classes that implement multidimensional arrays. Using operator 
overloading, these arrays have a conventional API that one might expect of an 
array class that allows individual array elements to be referenced using standard 
indexing, e.g., an expression a[i][j] -= a[i + 1][j]; subtracts from a[i][j] the value 
of the corresponding element in the next row. Thus, the details of compression 
and decompression required to implement this expression are hidden from the 
user, allowing applications to work with zfp arrays as though they were regular 
uncompressed arrays. Oftentimes, only changes to array declarations are needed 
for an existing application to use zfp arrays in place of uncompressed arrays. To 
accelerate computations, zfp makes use of a software cache of uncompressed blocks 
(stored in IEEE FP64 format) whose size is specified by the user, which avoids having 
to perform (de)compression each time an array element is accessed (see Figure 4).

Figure 4: Conceptual illustration of a zfp array, with persistent storage on the far right. The write-back 
software cache allows array accesses to be quickly serviced without (de)compressing the associated 
block upon each access.

virtual array compressed blocks

dirty
bit uncompressed block

software cache

block
index

application

http://www.llnl.gov
mailto:info@llnl.gov


12

 2023 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY   | www.llnl.gov | info@llnl.gov

ZFP: FAST, ACCURATE DATA COMPRESSION FOR MODERN SUPERCOMPUTING APPLICATIONS

C. Product comparison

As zfp serves both as a general compressor of numerical data and as a number 
format for in-memory computations, two types of comparisons with the state of the 
art are made.

Comparison with Other Number Formats

One strength of zfp is that its decorrelation of spatially correlated fields over 
small blocks of numbers allows repurposing redundant bits to increase numerical 
precision. High precision is needed, for example, to resolve differences between 
adjacent values when estimating derivatives using finite differences. Whereas 
number formats like IEEE floating point and posits [GY17] cannot exploit such 
correlations—because they store independent scalars—zfp represents multiple 
values in a small block as a single unit, allowing correlations between them to be 
removed. Currently, the only block-based random-access format that competes 
with zfp is the recently proposed Blaz [Mar22], which supports only 2D arrays (vs. 
1D–4D for zfp) and only at a single fixed rate of 5.625 bits/value (vs. essentially any 
rate for zfp).

Figure 5 illustrates the sensitivity of finite-difference derivative estimates to roundoff 
error in the function being differentiated (here, a radially symmetric function). 
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Figure 5: Visualization of first (top row) and second (bottom row) second-order finite-difference 
derivatives of the nonlinear function u(r)= ║r║3. The ideal result is concentric circular contour lines 
(contours are omitted when the function is poorly approximated). 12-bit zfp is qualitatively identical to 
64-bit IEEE floating point. Roundoff error in u(r) is magnified in its estimated derivatives and visible as 
“smeared” contours for Blaz, fp16, and fp32.
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It is evident that conventional IEEE single (FP32) and half (FP16) precision are 
inadequate, whereas fixed-rate zfp at only 12 bits of storage closely resembles 
double precision (FP64). Also evident is that, at similar bit rates, zfp outperforms 
Blaz, whose single rate proves inadequate for sensitive but common numerical 
computations like these. Additional comparisons, including with posits, are 
demonstrated in the accompanying video.

Comparison with Numerical Compressors

As secondary use case—a compressed format for archival storage (e.g., for storing 
simulation data on disk)—zfp has several competitors. Two prominent ones that, like 
zfp, are being developed with support from the U.S. Department of Energy’s Exascale 
Computing Project are sz [DC16] (a 2021 R&D 100 winner) and mgard [ATW+18] (we 
here compare with sz3 and mgard 1.5—the most recent versions). We also compare 
with best-of-breed floating-point compressors designed to maximize compression 
at the expense of speed: tthresh [BLP20] and sperr [LLC23]. Finally, we include in our 
comparison fpzip [LI06], which is known to be one of the best lossless compressors of 
multidimensional floating-point data (fpzip also supports lossy compression, but it is 
not its strength).

To evaluate effectiveness of lossy compression, one needs to account not only for 
compression ratio but also for the corresponding error introduced. This is usually 
done via rate-distortion plots, e.g., using signal-to-noise ratio (                              , where 
σ denotes standard deviation and E denotes root-mean-square error) vs. bit rate, R 
(in compressed bits of storage per array value). Like [LLC23], we favor accuracy gain 
plots (                                ) as they reveal important behaviors usually not visible in 
SNR plots. Accuracy gain directly tells how many bits of information were inferred 
by a compressor, i.e., the per-value savings in storage, and indicates when no more 
compression is possible when reaching a plateau where halving the error incurs one 
more bit of storage.

Figure 6 plots accuracy gain vs. rate over a range of error tolerances that have been 
successively halved for each data point. As is evident by the green lines, zfp achieves 
close to the highest gains and is consistently outperformed in this use case only 
by sperr. However, sperr and tthresh are far more computationally expensive than 
zfp, with implementations that are one to two orders of magnitude slower on CPU 
hardware, and several more orders of magnitude slower when compared with 
zfp’s GPU implementation. Also evident from this figure is how the zfp curves vary 
rather smoothly and predictably in stark contrast to the wobbly sz and mgard curves, 
which occasionally have large gaps in rate or precipitous drops in accuracy gain to 
negative levels, indicating that the data is expanded rather than compressed. Such 

http://www.llnl.gov
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kinks in the plots imply not only unpredictable storage and error that are sensitive 
to small changes in input parameters (such as error tolerance) but can also lead to 
unpredictable running times. Moreover, zfp consistently provides higher accuracy 
than sz and mgard at mid to high rates—a range important for numerical data 
analysis, which demands more accuracy than, for example, visualization.

zfp owes its predictable relationship between compressor parameters, bit rate, 
and error to excellent decorrelation that removes most data redundancy, and to 
a simple though efficient nonstatistical encoder that, unlike sz and mgard, does not 
have complex data dependencies from the use of statistical coders. Predictable and 
continuous response to input parameters avoids unpleasant surprises for end users, 
allows extrapolating compressor inputs to obtain a desired storage size or quality, 
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Figure 6: Accuracy gain (higher is better) as a function of bit rate (Miranda and S3D are from 
SDRBench [ZDL+20]). These plots highlight zfp’s predictable accuracy and rate as the error tolerance 
is halved for each data point. Such reliability and high performance give scientists confidence that 
small changes in compression parameters incur small changes in error and storage, while also being 
essential for error and convergence analysis.
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and significantly helps with error analysis such as convergence rate. Further evidence 
of zfp’s superior predictable performance and robustness of implementation is 
presented in a recent paper by one of zfp’s main competitors, who further concluded 
that, among several compressors evaluated, “Only zfp’s GPU implementation ran 
without crashes on our entire testing sets” [UBK+23]. This robustness comes from 
zfp’s careful design, focus on portability, and extensive unit tests.

As Figure 7 shows, zfp single-core CPU compression speed is on average 33% higher 
than sz’s, with mgard and sperr being roughly 7–8x slower and tthresh clocking in 
at 28x slower than zfp on average. Note that sperr and tthresh do not have GPU 
implementations. zfp has a particularly fast GPU implementation due to the 
massive data parallelism its block decomposition offers, resulting in a speedup of 
approximately 400x over its serial CPU implementation.

Figure 7: Comparison of serial CPU compression time between compressors for various SDRBench 
data sets. The time is reported as a ratio to zfp compression time.
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While compressors like sperr, mgard, and tthresh may be suitable for I/O, they 
lack the speed needed for more time-sensitive use cases, such as node-to-node 
communication and host-device transfers. Furthermore, no compressor other than 
zfp supports random access or the level of fine-grained compression needed for 
on-demand data access. When tasked with compressing a selection of 4 x 4 x 4 
blocks to the same level of accuracy, zfp uses 10x less storage than the second-best 
compressor (sperr) and as much as 70,000x less storage than the compressor with 
highest overhead (mgard) (Figure 8). Not until blocks are enlarged to 16 x 16 x 16 do 
other compressors become competitive, at which point a decompressed block is 
32 KB, effectively exhausting the entire L1 data cache. In contrast, a 16 bits/value 
compressed zfp block ranges from 64 bits (1D) to 1024 bits (3D), essentially occupying 
one processor register to 1–2 cache lines; uncompressed blocks are 4x larger. As 
such, only zfp is suitable for in-memory compression.

Figure 8: Storage overhead compared to zfp for compressing a single 4 x 4 x 4 block.
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D. Comparison Summary

Figure 9 summarizes the differences in features supported by zfp and its competitors, 
as well as various metrics related to performance, accuracy, availability, and overall 
community impact. As is evident from this matrix, zfp is not only one of the leading 
file compressors in terms of compression ratio, speed, and desirable and known 
error characteristics, but its support for in-memory compression with random 
access and a prescribed storage size makes  it uniquely suitable for both offline 
and in-memory number format. Its high speed also accommodates use cases for 
accelerating data movement across the entire memory hierarchy of a computer that 
are not possible with other compressors. It is also evident in this matrix that the 
early research prototype Blaz lacks both the features and flexibility in user-selected 
bit rate needed to achieve sufficient numerical accuracy and, thus, seriously contend 
with zfp as compressed number format. Finally, in terms of community impact and 
adoption, zfp is in a class by itself. In fact, we are unaware of any major applications 
of general utility that support one of our competitors but not zfp. For a partial list of 
customers, see the zfp website: zfp.llnl.gov.

Product Limitations

The zfp algorithm and library have some limitations, some of which are intrinsic and 
some which we expect to address in future versions:

• The fine-grained array partitioning into blocks benefits parallelism and random 
access but places a limit on achievable compression ratios, as a minimal 
amount of data (e.g., block exponent and some leading values bits) must be 
stored with every block.

• zfp trades some compression for performance and support for random access, 
allowing some compressors to achieve higher compression ratios, albeit at 
higher computational expense  and with support for sequential access only.

• Individual scalars cannot be loaded/stored without loading/storing the blocks 
they belong to. This limits granularity of access somewhat and introduces 
overhead when only a single scalar in a block is needed.

• zfp does not interface with prebuilt libraries, such as BLAS (not to be confused 
with the Blaz data compressor) and LAPACK, that process arrays via floating-
point pointers (e.g., double*). While zfp provides proxy pointers that act like 
regular pointers, applications that explicitly pass data via pointers must be 
instrumented and recompiled to take advantage of such proxies.

http://www.llnl.gov
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• Hardware compression is bottlenecked by zfp’s back-end encoder and 
decoder, which often operate on bits one at a time. As explored in several 
FPGA adaptations of zfp [HEE+22, LJ22, SJ19, SKJ20, SKJ22], one may trade 
compression ratio for a simpler but more performant coder.
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ZFP BLAZ SZ MGARD SPERR TTHRESH FPZIP Notes

Co
re

 fe
at

ur
es

Data dimensions 1D-4D 2D 1D-4D 1D-5D 2D-3D 3D-4D 1D-3D

Floating-point types ✓ ✓ ✓ ✓ ✓ ✓ ✓

Integer types ✓ ✓ ✓

Random access ✓ ✓

Fixed rate ✓ ✓ ✓ ✓

User-specifi ed rate ✓ ✓ ✓

Progressive access ✓ ✓ ✓ ✓

Lossless compression ✓ ✓

Array classes ✓ ✓ * * Rudimentary C 
support only

Sp
ee

d 
&

 b
ac

ke
nd

s

Speed ++ ++ + – – ––

Parallelism/scalability ++ ++ + + – –– ––

Predictable performance ++ ++ – ++ + + +

OpenMP ✓ ✓ ✓ ✓ *

CUDA ✓ ✓ * * SZ2 only

HIP ✓ * ✓† 
* Development branch 
only;   † MGARD-X only

AVX ✓ * ✓ * Intel 3rd party 
implementation

FPGA ✓ * ✓ * Available as LLNL/zhw 
GitHub repository

NEC VE ✓ * * NEC 3rd party 
implementation

Co
m

pr
es

si
on

er
ro

rs

Error distribution normal unknown uniform unknown unknown unknown relative

Absolute error bound ✓ ✓ ✓ ✓

Relative error bound ✓ ✓ ✓ ✓

Iterative error bound ✓

Convergence theory ✓

Predictable quality ++ N/A – – ++ + ++

La
ng

ua
ge

s

Command line interface ✓ ✓ ✓ ✓ ✓ ✓

C ✓ ✓ ✓ ✓ ✓

C++ ✓ ✓ ✓ ✓

Python ✓ ✓

Fortran ✓ ✓ * * SZ2 only

Julia ✓ * * 3rd party 
implementation

Rust ✓ * * 3rd party 
implementation
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ZFP BLAZ SZ MGARD SPERR TTHRESH FPZIP Notes

Pa
ck

ag
e

di
st

ri
bu

ti
on

Spack ✓ ✓ ✓ ✓ ✓

Anaconda ✓ ✓ ✓

Pip (PyPl) ✓

MacPorts ✓ ✓

E4S ✓ ✓

RPM (distros supported) 45 16 16 16

I/
O

 li
br

ar
y

su
pp

or
t

HDF5 ✓ * ✓ ✓ * Also bundled with 
HDF5 binary distribution

ADIOS2 ✓ ✓ ✓

MDIO ✓

BLOSC ✓

OpenZGY ✓

Zarr ✓ * * Via numcodecs

M
et

ri
cs

GitHub stars 616 5 145* 23 10 38 75 * SZ2 + SZ3

Conda downloads >2 million – 238* – – – 30 * SZ2 + SZ3

Google Scholar citations 528 0 411 67 0 98 497

GitHub dependents 31 0 0* 0 0 0 0 * SZ2 + SZ3

Figure 9: Comparison matrix between zfp, its primary competing number format, Blaz [Mar22], and 
state-of-the-art floating-point file compressors sz [DC16], mgaRd [ATW+18], spERR [LLC23], tthREsh [BLP20], 
and fpzip [LI06].
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4. SUMMARY

zfp accelerates HPC calculations and lowers cost by dramatically reducing memory 
and disk footprint, bandwidth requirements, and power usage. zfp is a compressed 
and highly efficient number format offering a unique alternative to conventional 
floating point in HPC applications. zfp is suitable for in-memory, in-transit, and offline 
storage of correlated multidimensional array data, and offers significant reduction of 
data volumes for accelerating and enabling memory capacity- and bandwidth-limited 
computations. Additionally, zfp increases accuracy of many numerically sensitive 
computations over alternative number formats and provides error controls that are 
intuitive to application scientists, who can easily substitute floating-point array data 
structures with zfp to achieve exact reductions in storage or levels of accuracy. zfp is 
highly performant and scalable through massive data parallelism. It runs on CPU, 
GPU, and accelerator hardware, and is available on Linux, macOS, and Windows 
through language bindings such as C, C++, Python, and Fortran. Freely available as 
open source, zfp has become a de facto standard compression solution in the HPC 
community, with broad adoption in dozens of important commercial and academic 
applications.
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6. ADDITIONAL SUPPORTING INFORMATION

Video: youtu.be/09Jl2ggiDuY

Documentation:

Website: zfp.llnl.gov 

User documentation: zfp.readthedocs.io/en/release1.0.0/

Open-source code: github.com/LLNL/zfp 
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twitter.com/Livermore_Lab
twitter.com/Livermore_Comp

Organization’s Facebook page URL:
facebook.com/livermore.lab

Additional social media URLs for your organization
instagram.com/livermore_lab
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