
ZFP:
Fast, Accurate Data
Compression for
Modern Supercomputing
Applications

LLNL-MI-849560

Prepared by LLNL under Contract DE-AC52-07NA27344.

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees
makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use
would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

Prepared for:

2023 R&D 100
Award Entry

Lawrence Livermore
National Laboratory

7000 East Avenue
Livermore CA 94550

Contact

Peter Lindstrom

1

 2023 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.llnl.gov | info@llnl.gov

ZFP: FAST, ACCURATE DATA COMPRESSION FOR MODERN SUPERCOMPUTING APPLICATIONS

ZFP:
Fast, Accurate Data Compression for
Modern Supercomputing Applications

1. PRODUCT/SERVICES CATEGORIES

A. Title

zfp v1.0.0

B. Product category

Software/Services

2. R&D 100 PRODUCT/SERVICE DETAILS

A. Primary submitting organization

Lawrence Livermore National Laboratory

B. Co-developing organization

n/a

C. Product brand name

zfp

http://www.llnl.gov
mailto:info@llnl.gov

2

 2023 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.llnl.gov | info@llnl.gov

ZFP: FAST, ACCURATE DATA COMPRESSION FOR MODERN SUPERCOMPUTING APPLICATIONS

D. Product introduction

This product was introduced to the market between January 1, 2022, and March
31, 2023. This product is not subject to regulatory approval. zfp version 1.0.0 was
released on August 1, 2022.

E. Price in U.S. Dollars

Free. zfp is open source and free to users.

F. Short description

The zfp software library provides a comprehensive solution to both lossy and
lossless data compression. zfp reduces the storage space of high-precision
floating-point data without sacrificing accuracy. It was designed to be a
compact number format for storing data arrays in-memory in compressed
form while supporting high-speed random access.

G. Type of institution represented

Government or Independent Lab/Institute

H. Submitter’s relationship to product

Product developer

I. Photo

J. Video

youtu.be/09Jl2ggiDuY

zfp product information, documentation, and other
details are available at zfp.llnl.gov.

http://www.llnl.gov
mailto:info@llnl.gov
http://youtu.be/09Jl2ggiDuY

3

 2023 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.llnl.gov | info@llnl.gov

ZFP: FAST, ACCURATE DATA COMPRESSION FOR MODERN SUPERCOMPUTING APPLICATIONS

3. PRODUCT/SERVICE DESCRIPTION

A. What does the product or technology do?

zfp [Lin14] is a new compressed number format for floating-point and integer arrays
intended to reduce in-memory and offline storage and transfer time of large data
sets that arise in high-performance computing (HPC). zfp effectively expands available
CPU and GPU memory by as much as 10x; reduces offline storage by one to two
orders of magnitude; and—by reducing data volumes—speeds up data movement
between memory and disk, distributed compute nodes, CPU and GPU memory, and
even main memory and CPU registers. Such reductions in data movement are critical
to today’s HPC applications, whose performance is largely limited by data movement
rather than compute power [SDM10, RD15].

Contrary to competing compressed formats designed for file storage, a unique
feature of zfp is that it supports high-speed, constant-time random access to array
elements—both for read and write operations—suitable also for in-memory storage.
This capability allows applications to work with zfp arrays as though they were
uncompressed and to substitute bulky floating-point arrays in the ubiquitous IEEE-
754 format [Std19] with lean zfp arrays with few code changes. Although zfp supports
lossless compression to ensure values are preserved exactly bit for bit, its primary
use case is lossy compression, where small but usually negligible numerical errors
are introduced to significantly boost compression levels. While such errors may at
first seem alarming , similar rounding errors in fact occur in virtually every arithmetic
operation that uses finite-precision floating-point arithmetic. In comparison with
IEEE-754, zfp increases accuracy per bit stored and supports user-specified error
tolerances, allowing numerical errors to be controlled while simultaneously reducing
storage and data movement.

zfp provides C and C++ multidimensional array implementations for in-memory
storage and an application programming interface (API) for compressing and
decompressing entire floating-point arrays, e.g., for offline storage and data transfer.
By decomposing array data into small blocks of numbers that are compressed
independently, zfp enables massive data parallelism to speed up (de)compression
on multicore CPU and GPU devices. zfp supports several back ends—serial, OpenMP,
CUDA, and HIP—and programming languages—C, C++, Python, and Fortran—with
additional back ends and language bindings available through third parties. The
zfp software library is available as open source on GitHub under a permissive BSD
license, as is its zhw field programmable gate array (FPGA) hardware implementation.

http://www.llnl.gov
mailto:info@llnl.gov

4

 2023 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.llnl.gov | info@llnl.gov

ZFP: FAST, ACCURATE DATA COMPRESSION FOR MODERN SUPERCOMPUTING APPLICATIONS

Compression Errors

Unlike the majority of today’s lossy file compressors [ATW+18, BLP20, DC16, LI06,
LLC23], quite a bit is known about the numerical errors introduced by zfp’s lossy
compression modes. For instance, it is known that the zfp error distributions are
essentially normal (or Gaussian), but with finite support (i.e., errors are bounded)
due to the mixing of uniform roundoff errors that occur in its decorrelating
transform (see below) and the central limit theorem [Lin17]. This normality is
attractive as it allows a user to reason about the propagation of such errors; e.g.,
the sum of two normal random variables is also normal. Moreover, the errors can
be shown to be unbiased and uncorrelated [HBP+19], which is important in many
physics applications to ensure conservation of mass, energy, and momentum, and
in statistics.

Absolute error bounds for zfp compressed data have been established [DFH+19],
which allow scientists to set an acceptable error tolerance wherein zfp reduces the
data as much as possible while respecting the tolerance. While such error bounds
are starting to become commonplace for lossy numerical compressors [ATW+18,

truncation error

observed ZFP error

ZFP error bound

1E-14

1E-13

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

0 500 1000 1500 2000 2500 3000

er
ro

r

time step

Figure 1: When zfp is the primary representation of the evolving solution in a PDE solver, compression errors
are introduced in each time step. Such errors could potentially accumulate over time and cause the solution
to blow up. The zfp team has established error bounds not just for a single application of compression
but for the cumulative error over time in iterative solvers. This allows scientists to choose an appropriate
compression ratio with the assurance that compression errors are far below other sources of error.

http://www.llnl.gov
mailto:info@llnl.gov

5

 2023 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.llnl.gov | info@llnl.gov

ZFP: FAST, ACCURATE DATA COMPRESSION FOR MODERN SUPERCOMPUTING APPLICATIONS

DC16, LLC23], bounds usually exist only for a single application of compression, as
these compressors are primarily designed for compressing a given data set only
once for offline storage. zfp, on the other hand, is designed not only to compress
numerical data but also to serve as an in-memory substitute for traditional
floating-point numbers. As such, compression errors are introduced each time
a piece of data is compressed, or converted to the zfp format. This is of particular
concern in iterative computations, e.g., partial differential equation (PDE) solvers,
that use zfp to store the evolving solution. In such scenarios, compression errors
are incurred in each iteration (or time step) and may in principle cascade (Figure 1).
Iterative error bounds [FDH+20], which are known only for zfp, provide guarantees
that errors do not grow uncontrollably over time and eventually “blow up.”

An important stress case for lossy compressors and other reduced-precision
representations is how numerical errors are magnified in “poorly conditioned”
operations, such as when estimating spatial derivatives using finite differences
in PDEs. By analyzing the zfp back-end encoding scheme, one can show that in

O(h215/64)
compression error

O(h8) truncation error

O(h−1) roundoff error

2−32−42−52−62−72−82−92−10

1E-15

1E-14

1E-13

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

er
ro

r i
n
u x

(x
, y

, z
)

grid spacing h

FP32 FP64 ZFP28

Figure 2: Rate of convergence of finite-difference derivative error as a function of grid spacing for
conventional IEEE floating point (FP32, FP64) and zfp at 28-bit storage. The total error plotted is
the sum of truncation error, which decreases with finer grids, and roundoff error, which increases
with finer grids. zfp also incurs compression error (another form of roundoff error). Unlike standard
number formats, zfp’s compression error decreases with finer grids and would surpass FP64 if zfp were
not first converted to FP64 for computing the finite-difference derivative estimate. At 28 bits, zfp is up
to 500 million times more accurate than 32-bit floating point.

http://www.llnl.gov
mailto:info@llnl.gov

6

 2023 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.llnl.gov | info@llnl.gov

ZFP: FAST, ACCURATE DATA COMPRESSION FOR MODERN SUPERCOMPUTING APPLICATIONS

d dimensions, the compression error in the nth derivative asymptotically follows
O(h3d(2-1-4-d)-n) as the grid spacing h approaches zero, or roughly O(h4.36-n) in three
dimensions (Figure 2). In other words, derivative accuracy increases rather than
decreases with finer grids using zfp, a behavior opposite that of traditional floating-
point formats. In fact, zfp accuracy would surpass even double precision (FP64) if
zfp were not first converted to FP64 for computing the finite-difference derivative
estimate. We have shown that such computations can be performed directly on
the partially decompressed zfp format, further reducing errors [Lin19]. These are
strong arguments for adopting zfp in PDEs, where double precision is often needed
to combat excessive rounding errors associated with single (FP32) and half (FP16)
precision. The accompanying video (youtu.be/09Jl2ggiDuY) illustrates how computing
on 12-bit zfp gives qualitatively identical results to computing at full 64-bit precision,
while conventional 32-bit floating-point precision is insufficient.

This result is significant: a more than 5x reduction using zfp can be achieved with no
change to the underlying application algorithm. In contrast, substantial R&D has been
invested in mixed-precision algorithms [AAB+21] using FP16 and FP32 types (for 4x
and 2x reduction, respectively), which in addition to explicit type declarations and
conversions usually require special “tricks” such as careful rescaling to avoid over- and
underflow (due to reduced dynamic range; zfp retains the full dynamic range of FP64),
extra passes of iterative refinement, and targeting special hardware like tensor cores—
all of which demand nontrivial changes to the algorithm and implementation.

Another important benefit of zfp is that it supports fine bit rate selection and, thus, a
very flexible storage size. Per-value storage can be specified by the user in increments
as fine as 1/32 bit. This feature effectively provides a continuous precision dial that
avoids the dichotomy of the user’s having to select among three discrete storage sizes
(16, 32, and 64 bits) and distinct types using standard floating-point formats.

Compression Speed

One important consideration, especially for accelerating data movement via
compression, is the speed of compression and decompression. That is, to realize a
net performance gain in data transfers, the total time spent on compression (by the
sender), transfer of compressed data, and decompression (by the receiver) must
not exceed the time needed to transfer the data uncompressed. As documented
extensively through numerous publications [LLH+18, LDT+19, NVB+20, LLC23,
UBK+23], zfp is one of if not the fastest lossy numerical compressor available. The zfp
CUDA-based GPU implementation achieves up to 700 GB/s throughput in compression
and decompression, as shown in Figure 3. This is substantially faster than the
throughput of I/O, supercomputer interconnects, and PCI Express for channeling data

http://www.llnl.gov
mailto:info@llnl.gov
http://youtu.be/09Jl2ggiDuY

7

 2023 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.llnl.gov | info@llnl.gov

ZFP: FAST, ACCURATE DATA COMPRESSION FOR MODERN SUPERCOMPUTING APPLICATIONS

between CPU and GPU. Several success stories of using zfp to accelerate I/O [LCL16,
TBP+21], communication [ZCK+21, ZKA+22, RZS+22], and CPU–GPU transfers [BAO19,
NVB+20] have demonstrated speedups of up to 40x, 6x, and 2.2x, respectively.

The relative simplicity and efficiency of the zfp compression scheme has made it a
candidate for implementation in HPC hardware, where one can entirely eliminate
some operations not readily available in today’s CPU instruction sets. For example,
transposing a bit matrix—one of the costliest steps in zfp—requires repeated data
accesses and/or a large register file to hold intermediate results, but is done “instantly”
in hardware via custom wiring. Moreover, a hardware implementation can more easily
support fine-grained parallelism than one written in software, which reduces latency
and boosts overall throughput. For these reasons, several independent research teams
have developed FPGA hardware implementations of zfp as a step toward on-chip
compression [SJ19, SKJ20, HEE+22, LJ22, SKJ22, BWL+22], each with slight variations to
further improve performance.

Community Impact

zfp is recognized as one of the leading solutions for numerical data compression and
has consequently seen widespread adoption in industry, academia, and national

Figure 3: zfp compression throughput on three generations of NVIDIA GPUs. Throughput varies with bit
rate as compression time is linear in the number of bits output.

10

100

1000

0.5 1 2 4 8 16 32 64th
ro

ug
hp

ut
 (u

nc
om

pr
es

se
d

G
B/

s)

rate (compressed bits/value)

ZFP CUDA fixed-accuracy compression throughput
A100 V100 P100

http://www.llnl.gov
mailto:info@llnl.gov

8

 2023 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.llnl.gov | info@llnl.gov

ZFP: FAST, ACCURATE DATA COMPRESSION FOR MODERN SUPERCOMPUTING APPLICATIONS

labs. With over 1.5 million measurable downloads per year (from GitHub, Anaconda,
and PyPI), the following features are largely responsible for zfp’s impact and rapid
adoption:

• Provides unique features like random access, prescribed and guaranteed
memory footprint, and fine-grained access not supported by other
compressors (see comparison matrix on p.19).

• Is very effective at compressing data, competing with best of breed.

• Is the fastest floating-point compressor available.

• Is highly parallelizable by design.

• Has attractive error properties and error guarantees not available through
other compressors.

• Provides C, C++, Python, and Fortran bindings, with other language bindings
available through third parties (Rust, Julia, and WebAssembly, in particular).

• Supports numerous back ends, including serial, OpenMP, CUDA, and HIP,
with additional implementations by Intel (for AVX support) and NEC (for their
TSUBASA vector engine). Additionally, several FPGA hardware implementations
have been published.

• Relies on best-practices software development using continuous integration
and deployment; supports CMake and GNU make as build systems; is
rigorously tested using more than 5,000 unit and functional tests; and employs
code coverage analysis.

• Is well documented online via ReadTheDocs, with complete API documentation,
tutorials, code examples, FAQ, and installation and troubleshooting guides.
Searchable documentation exceeds 200 PDF pages.

• Is production ready with reliable performance and portability. zfp runs and is
continuously tested on Linux, macOS, and Windows. It conforms to C89 and
C++98 language standards and has been built with numerous compilers (gcc,
clang, Intel, XLC, PGI, MSVC, MingGW).

• Is easy to install and widely available through an array of package managers,
including Spack, Anaconda, Pip, Linux RPM, and MacPorts.

http://www.llnl.gov
mailto:info@llnl.gov

9

 2023 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.llnl.gov | info@llnl.gov

ZFP: FAST, ACCURATE DATA COMPRESSION FOR MODERN SUPERCOMPUTING APPLICATIONS

• Is open source and freely available through a permissive BSD license.

As a self-contained software library with no dependencies on other software, zfp’s
impact can in part be measured through adoption by customers in other high-impact
commercial and academic applications. A few example applications that support zfp
include:

• ADIOS, a high-performance I/O library and past R&D 100 winner.

• BLOSC, one of the best-known frameworks for data compression.

• HDF5®, perhaps the most ubiquitous file format for science data. zfp is one of
only a handful of compressors shipped with HDF5® binaries.

• Intel® Integrated Performance Primitives and Intel® oneDTL.

• MVAPICH2, one of the leading MPI implementations of message passing.

• Open Inventor™, a commercial 3D visualization toolkit.

• OpenZGY, Schlumberger’s open-source compressed format for seismic data
based on the SEG-Y industry standard in the oil and gas industry. This format is
based solely on zfp.

• VTK-m, Kitware’s high-performance visualization library.

• Zarr, one of the leading libraries for compressed array storage and an HDF5
competitor.

Among these applications, only ADIOS supports any of zfp’s competitors (discussed
further below). Numerous other examples of zfp customers are listed on the zfp
homepage (zfp.llnl.gov).

http://www.llnl.gov
mailto:info@llnl.gov
https://zfp.llnl.gov

10

 2023 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.llnl.gov | info@llnl.gov

ZFP: FAST, ACCURATE DATA COMPRESSION FOR MODERN SUPERCOMPUTING APPLICATIONS

B. How does the product operate?

zfp was inspired by texture compression formats [BAC96] designed for RGB images,
which have long had hardware support on GPUs and mobile devices. Like zfp,
such formats partition images into small blocks (usually 4x4 pixels), each of which
is compressed to a fixed number of bits. This so-called “fixed-rate compression”
setup allows blocks to be quickly retrieved and decompressed on demand via
random access. Unlike texture compression, which may spend a large amount
of time optimizing the compression process to support fast read-only access, zfp
performance is symmetric for compression and decompression, with read and
write accesses being equally fast. zfp also has been designed for high-precision
numerical data common in HPC, e.g., in PDEs, and supports 1D–4D integer and
floating-point arrays.

zfp exploits redundancy between numbers in conventional floating-point arrays,
which for science and engineering applications tend to vary slowly with array index.
For example, in gridded scalar fields that represent physical quantities, such as
temperature and pressure in a weather model, values at adjacent grid points tend
to be highly correlated. Such slow variations often cause nearby values to share
the same floating-point exponent as well as several leading value bits. zfp removes
such redundancy in exponents using a block-floating-point representation, where
the 4d values of a d-dimensional block are expressed relative to a single common
exponent. Redundancy in leading value bits is subsequently removed using a
linear decorrelating transform similar to the discrete cosine transform used in JPEG
image compression [Wal92]. This step, when followed by an integer conversion to
“negabinary” (base –2), replaces without loss common leading bits with zero-bits,
which can be compressed efficiently. The custom transform used by zfp is very
efficient and involves only 5 integer additions and subtractions each and 6 bit-
shifts, compared to 16 multiplications and 12 additions for a naïve implementation.
The final step losslessly encodes the transform coefficients by bit plane, from the
most to least significant bit, and outputs a variable-length bit string whose length
depends on how compressible the data is. The bit string can be truncated to any
number of bits, e.g., to meet a fixed storage budget or requested error tolerance.
This discarding of least significant bits is equivalent to rounding that already
occurs in floating-point arithmetic and is the primary source of loss in accuracy.
As with floating-point rounding, bit string truncation introduces a predictable and
controllable level of error.

The selected zfp “compression mode” determines how bit strings are truncated.
In fixed-rate mode, the user specifies an exact storage size by fixing the number of
compressed bits to use per block. In fixed-precision mode, zfp transform coefficients

http://www.llnl.gov
mailto:info@llnl.gov

11

 2023 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.llnl.gov | info@llnl.gov

ZFP: FAST, ACCURATE DATA COMPRESSION FOR MODERN SUPERCOMPUTING APPLICATIONS

are encoded to a given number of bits of precision with the remaining bits zeroed,
which results in variable-length storage. In fixed-accuracy mode, the user specifies
an absolute error tolerance from which values may not deviate. In this use case, the
number of bits of precision needed for coefficients is dictated by the value of the
common block exponent relative to the error tolerance. Finally, zfp also supports a
lossless compression mode that leaves the bit string at its full length and ensures all
remaining algorithmic steps in zfp are fully reversible.

zfp provides C++ classes that implement multidimensional arrays. Using operator
overloading, these arrays have a conventional API that one might expect of an
array class that allows individual array elements to be referenced using standard
indexing, e.g., an expression a[i][j] -= a[i + 1][j]; subtracts from a[i][j] the value
of the corresponding element in the next row. Thus, the details of compression
and decompression required to implement this expression are hidden from the
user, allowing applications to work with zfp arrays as though they were regular
uncompressed arrays. Oftentimes, only changes to array declarations are needed
for an existing application to use zfp arrays in place of uncompressed arrays. To
accelerate computations, zfp makes use of a software cache of uncompressed blocks
(stored in IEEE FP64 format) whose size is specified by the user, which avoids having
to perform (de)compression each time an array element is accessed (see Figure 4).

Figure 4: Conceptual illustration of a zfp array, with persistent storage on the far right. The write-back
software cache allows array accesses to be quickly serviced without (de)compressing the associated
block upon each access.

virtual array compressed blocks

dirty
bit uncompressed block

software cache

block
index

application

http://www.llnl.gov
mailto:info@llnl.gov

12

 2023 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.llnl.gov | info@llnl.gov

ZFP: FAST, ACCURATE DATA COMPRESSION FOR MODERN SUPERCOMPUTING APPLICATIONS

C. Product comparison

As zfp serves both as a general compressor of numerical data and as a number
format for in-memory computations, two types of comparisons with the state of the
art are made.

Comparison with Other Number Formats

One strength of zfp is that its decorrelation of spatially correlated fields over
small blocks of numbers allows repurposing redundant bits to increase numerical
precision. High precision is needed, for example, to resolve differences between
adjacent values when estimating derivatives using finite differences. Whereas
number formats like IEEE floating point and posits [GY17] cannot exploit such
correlations—because they store independent scalars—zfp represents multiple
values in a small block as a single unit, allowing correlations between them to be
removed. Currently, the only block-based random-access format that competes
with zfp is the recently proposed Blaz [Mar22], which supports only 2D arrays (vs.
1D–4D for zfp) and only at a single fixed rate of 5.625 bits/value (vs. essentially any
rate for zfp).

Figure 5 illustrates the sensitivity of finite-difference derivative estimates to roundoff
error in the function being differentiated (here, a radially symmetric function).

BLAZ 5.625 bits/value ZFP 5.5 bits/value ZFP 12 bits/value IEEE FP 64 bits/value IEEE FP 32 bits/value IEEE FP 16 bits/value

gr
ad

ie
nt

 n
or

m
 ∥∇

u∥
La

pl
ac

ia
n

∆
u

Figure 5: Visualization of first (top row) and second (bottom row) second-order finite-difference
derivatives of the nonlinear function u(r)= ║r║3. The ideal result is concentric circular contour lines
(contours are omitted when the function is poorly approximated). 12-bit zfp is qualitatively identical to
64-bit IEEE floating point. Roundoff error in u(r) is magnified in its estimated derivatives and visible as
“smeared” contours for Blaz, fp16, and fp32.

http://www.llnl.gov
mailto:info@llnl.gov

13

 2023 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.llnl.gov | info@llnl.gov

ZFP: FAST, ACCURATE DATA COMPRESSION FOR MODERN SUPERCOMPUTING APPLICATIONS

It is evident that conventional IEEE single (FP32) and half (FP16) precision are
inadequate, whereas fixed-rate zfp at only 12 bits of storage closely resembles
double precision (FP64). Also evident is that, at similar bit rates, zfp outperforms
Blaz, whose single rate proves inadequate for sensitive but common numerical
computations like these. Additional comparisons, including with posits, are
demonstrated in the accompanying video.

Comparison with Numerical Compressors

As secondary use case—a compressed format for archival storage (e.g., for storing
simulation data on disk)—zfp has several competitors. Two prominent ones that, like
zfp, are being developed with support from the U.S. Department of Energy’s Exascale
Computing Project are sz [DC16] (a 2021 R&D 100 winner) and mgard [ATW+18] (we
here compare with sz3 and mgard 1.5—the most recent versions). We also compare
with best-of-breed floating-point compressors designed to maximize compression
at the expense of speed: tthresh [BLP20] and sperr [LLC23]. Finally, we include in our
comparison fpzip [LI06], which is known to be one of the best lossless compressors of
multidimensional floating-point data (fpzip also supports lossy compression, but it is
not its strength).

To evaluate effectiveness of lossy compression, one needs to account not only for
compression ratio but also for the corresponding error introduced. This is usually
done via rate-distortion plots, e.g., using signal-to-noise ratio (, where
σ denotes standard deviation and E denotes root-mean-square error) vs. bit rate, R
(in compressed bits of storage per array value). Like [LLC23], we favor accuracy gain
plots () as they reveal important behaviors usually not visible in
SNR plots. Accuracy gain directly tells how many bits of information were inferred
by a compressor, i.e., the per-value savings in storage, and indicates when no more
compression is possible when reaching a plateau where halving the error incurs one
more bit of storage.

Figure 6 plots accuracy gain vs. rate over a range of error tolerances that have been
successively halved for each data point. As is evident by the green lines, zfp achieves
close to the highest gains and is consistently outperformed in this use case only
by sperr. However, sperr and tthresh are far more computationally expensive than
zfp, with implementations that are one to two orders of magnitude slower on CPU
hardware, and several more orders of magnitude slower when compared with
zfp’s GPU implementation. Also evident from this figure is how the zfp curves vary
rather smoothly and predictably in stark contrast to the wobbly sz and mgard curves,
which occasionally have large gaps in rate or precipitous drops in accuracy gain to
negative levels, indicating that the data is expanded rather than compressed. Such

http://www.llnl.gov
mailto:info@llnl.gov

14

 2023 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.llnl.gov | info@llnl.gov

ZFP: FAST, ACCURATE DATA COMPRESSION FOR MODERN SUPERCOMPUTING APPLICATIONS

kinks in the plots imply not only unpredictable storage and error that are sensitive
to small changes in input parameters (such as error tolerance) but can also lead to
unpredictable running times. Moreover, zfp consistently provides higher accuracy
than sz and mgard at mid to high rates—a range important for numerical data
analysis, which demands more accuracy than, for example, visualization.

zfp owes its predictable relationship between compressor parameters, bit rate,
and error to excellent decorrelation that removes most data redundancy, and to
a simple though efficient nonstatistical encoder that, unlike sz and mgard, does not
have complex data dependencies from the use of statistical coders. Predictable and
continuous response to input parameters avoids unpleasant surprises for end users,
allows extrapolating compressor inputs to obtain a desired storage size or quality,

-8

-4

0

4

8

12

16

20

24

28

0 8 16 24 32 40 48 56 64

ac
cu

ra
cy

 g
ai

n
(b

its
/v

al
ue

)

rate (bits/value)

Miranda Viscosity

FPZIP MGARD SPERR SZ TTHRESH ZFP

0

4

8

12

16

20

24

28

32

36

40

0 4 8 12 16 20 24 28 32

ac
cu

ra
cy

 g
ai

n
(b

its
/v

al
ue

)

rate (bits/value)

S3D CH4

FPZIP MGARD SPERR SZ TTHRESH ZFP

-12

-8

-4

0

4

8

12

16

0 4 8 12 16 20 24 28 32 36 40 44 48

ac
cu

ra
cy

 g
ai

n
(b

its
/v

al
ue

)

rate (bits/value)

Jet z velocity

FPZIP MGARD SPERR SZ TTHRESH ZFP

-24

-20

-16

-12

-8

-4

0

0 8 16 24 32 40 48 56 64

ac
cu

ra
cy

 g
ai

n
(b

its
/v

al
ue

)

rate (bits/value)

Logistic Map

FPZIP MGARD SPERR SZ TTHRESH ZFP

Figure 6: Accuracy gain (higher is better) as a function of bit rate (Miranda and S3D are from
SDRBench [ZDL+20]). These plots highlight zfp’s predictable accuracy and rate as the error tolerance
is halved for each data point. Such reliability and high performance give scientists confidence that
small changes in compression parameters incur small changes in error and storage, while also being
essential for error and convergence analysis.

http://www.llnl.gov
mailto:info@llnl.gov

15

 2023 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.llnl.gov | info@llnl.gov

ZFP: FAST, ACCURATE DATA COMPRESSION FOR MODERN SUPERCOMPUTING APPLICATIONS

and significantly helps with error analysis such as convergence rate. Further evidence
of zfp’s superior predictable performance and robustness of implementation is
presented in a recent paper by one of zfp’s main competitors, who further concluded
that, among several compressors evaluated, “Only zfp’s GPU implementation ran
without crashes on our entire testing sets” [UBK+23]. This robustness comes from
zfp’s careful design, focus on portability, and extensive unit tests.

As Figure 7 shows, zfp single-core CPU compression speed is on average 33% higher
than sz’s, with mgard and sperr being roughly 7–8x slower and tthresh clocking in
at 28x slower than zfp on average. Note that sperr and tthresh do not have GPU
implementations. zfp has a particularly fast GPU implementation due to the
massive data parallelism its block decomposition offers, resulting in a speedup of
approximately 400x over its serial CPU implementation.

Figure 7: Comparison of serial CPU compression time between compressors for various SDRBench
data sets. The time is reported as a ratio to zfp compression time.

0.1

1

10

100

S3D CH4 S3D T S3D u Miranda p Miranda μ Miranda u Nyx ρ Nyx u

CP
U

 c
om

pr
es

si
on

 ti
m

e
re

la
tiv

e
to

 Z
FP

MGARD SPERR SZ TTHRESH

http://www.llnl.gov
mailto:info@llnl.gov

16

 2023 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.llnl.gov | info@llnl.gov

ZFP: FAST, ACCURATE DATA COMPRESSION FOR MODERN SUPERCOMPUTING APPLICATIONS

While compressors like sperr, mgard, and tthresh may be suitable for I/O, they
lack the speed needed for more time-sensitive use cases, such as node-to-node
communication and host-device transfers. Furthermore, no compressor other than
zfp supports random access or the level of fine-grained compression needed for
on-demand data access. When tasked with compressing a selection of 4 x 4 x 4
blocks to the same level of accuracy, zfp uses 10x less storage than the second-best
compressor (sperr) and as much as 70,000x less storage than the compressor with
highest overhead (mgard) (Figure 8). Not until blocks are enlarged to 16 x 16 x 16 do
other compressors become competitive, at which point a decompressed block is
32 KB, effectively exhausting the entire L1 data cache. In contrast, a 16 bits/value
compressed zfp block ranges from 64 bits (1D) to 1024 bits (3D), essentially occupying
one processor register to 1–2 cache lines; uncompressed blocks are 4x larger. As
such, only zfp is suitable for in-memory compression.

Figure 8: Storage overhead compared to zfp for compressing a single 4 x 4 x 4 block.

1

10

100

1,000

10,000

100,000

zeros ones linear

co
m

pr
es

se
d

si
ze

 re
la

tiv
e

to
 Z
FP

FPZIP MGARD SPERR SZ TTHRESH

http://www.llnl.gov
mailto:info@llnl.gov

17

 2023 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.llnl.gov | info@llnl.gov

ZFP: FAST, ACCURATE DATA COMPRESSION FOR MODERN SUPERCOMPUTING APPLICATIONS

D. Comparison Summary

Figure 9 summarizes the differences in features supported by zfp and its competitors,
as well as various metrics related to performance, accuracy, availability, and overall
community impact. As is evident from this matrix, zfp is not only one of the leading
file compressors in terms of compression ratio, speed, and desirable and known
error characteristics, but its support for in-memory compression with random
access and a prescribed storage size makes it uniquely suitable for both offline
and in-memory number format. Its high speed also accommodates use cases for
accelerating data movement across the entire memory hierarchy of a computer that
are not possible with other compressors. It is also evident in this matrix that the
early research prototype Blaz lacks both the features and flexibility in user-selected
bit rate needed to achieve sufficient numerical accuracy and, thus, seriously contend
with zfp as compressed number format. Finally, in terms of community impact and
adoption, zfp is in a class by itself. In fact, we are unaware of any major applications
of general utility that support one of our competitors but not zfp. For a partial list of
customers, see the zfp website: zfp.llnl.gov.

Product Limitations

The zfp algorithm and library have some limitations, some of which are intrinsic and
some which we expect to address in future versions:

• The fine-grained array partitioning into blocks benefits parallelism and random
access but places a limit on achievable compression ratios, as a minimal
amount of data (e.g., block exponent and some leading values bits) must be
stored with every block.

• zfp trades some compression for performance and support for random access,
allowing some compressors to achieve higher compression ratios, albeit at
higher computational expense and with support for sequential access only.

• Individual scalars cannot be loaded/stored without loading/storing the blocks
they belong to. This limits granularity of access somewhat and introduces
overhead when only a single scalar in a block is needed.

• zfp does not interface with prebuilt libraries, such as BLAS (not to be confused
with the Blaz data compressor) and LAPACK, that process arrays via floating-
point pointers (e.g., double*). While zfp provides proxy pointers that act like
regular pointers, applications that explicitly pass data via pointers must be
instrumented and recompiled to take advantage of such proxies.

http://www.llnl.gov
mailto:info@llnl.gov
https://zfp.llnl.gov

18

 2023 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.llnl.gov | info@llnl.gov

ZFP: FAST, ACCURATE DATA COMPRESSION FOR MODERN SUPERCOMPUTING APPLICATIONS

• Hardware compression is bottlenecked by zfp’s back-end encoder and
decoder, which often operate on bits one at a time. As explored in several
FPGA adaptations of zfp [HEE+22, LJ22, SJ19, SKJ20, SKJ22], one may trade
compression ratio for a simpler but more performant coder.

http://www.llnl.gov
mailto:info@llnl.gov

19

 2023 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.llnl.gov | info@llnl.gov

ZFP: FAST, ACCURATE DATA COMPRESSION FOR MODERN SUPERCOMPUTING APPLICATIONS

ZFP BLAZ SZ MGARD SPERR TTHRESH FPZIP Notes

Co
re

 fe
at

ur
es

Data dimensions 1D-4D 2D 1D-4D 1D-5D 2D-3D 3D-4D 1D-3D

Floating-point types ✓ ✓ ✓ ✓ ✓ ✓ ✓

Integer types ✓ ✓ ✓

Random access ✓ ✓

Fixed rate ✓ ✓ ✓ ✓

User-specifi ed rate ✓ ✓ ✓

Progressive access ✓ ✓ ✓ ✓

Lossless compression ✓ ✓

Array classes ✓ ✓ * * Rudimentary C
support only

Sp
ee

d
&

 b
ac

ke
nd

s

Speed ++ ++ + – – ––

Parallelism/scalability ++ ++ + + – –– ––

Predictable performance ++ ++ – ++ + + +

OpenMP ✓ ✓ ✓ ✓ *

CUDA ✓ ✓ * * SZ2 only

HIP ✓ * ✓†
* Development branch
only; † MGARD-X only

AVX ✓ * ✓ * Intel 3rd party
implementation

FPGA ✓ * ✓ * Available as LLNL/zhw
GitHub repository

NEC VE ✓ * * NEC 3rd party
implementation

Co
m

pr
es

si
on

er
ro

rs

Error distribution normal unknown uniform unknown unknown unknown relative

Absolute error bound ✓ ✓ ✓ ✓

Relative error bound ✓ ✓ ✓ ✓

Iterative error bound ✓

Convergence theory ✓

Predictable quality ++ N/A – – ++ + ++

La
ng

ua
ge

s

Command line interface ✓ ✓ ✓ ✓ ✓ ✓

C ✓ ✓ ✓ ✓ ✓

C++ ✓ ✓ ✓ ✓

Python ✓ ✓

Fortran ✓ ✓ * * SZ2 only

Julia ✓ * * 3rd party
implementation

Rust ✓ * * 3rd party
implementation

http://www.llnl.gov
mailto:info@llnl.gov

20

 2023 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.llnl.gov | info@llnl.gov

ZFP: FAST, ACCURATE DATA COMPRESSION FOR MODERN SUPERCOMPUTING APPLICATIONS

ZFP BLAZ SZ MGARD SPERR TTHRESH FPZIP Notes

Pa
ck

ag
e

di
st

ri
bu

ti
on

Spack ✓ ✓ ✓ ✓ ✓

Anaconda ✓ ✓ ✓

Pip (PyPl) ✓

MacPorts ✓ ✓

E4S ✓ ✓

RPM (distros supported) 45 16 16 16

I/
O

 li
br

ar
y

su
pp

or
t

HDF5 ✓ * ✓ ✓ * Also bundled with
HDF5 binary distribution

ADIOS2 ✓ ✓ ✓

MDIO ✓

BLOSC ✓

OpenZGY ✓

Zarr ✓ * * Via numcodecs

M
et

ri
cs

GitHub stars 616 5 145* 23 10 38 75 * SZ2 + SZ3

Conda downloads >2 million – 238* – – – 30 * SZ2 + SZ3

Google Scholar citations 528 0 411 67 0 98 497

GitHub dependents 31 0 0* 0 0 0 0 * SZ2 + SZ3

Figure 9: Comparison matrix between zfp, its primary competing number format, Blaz [Mar22], and
state-of-the-art floating-point file compressors sz [DC16], mgaRd [ATW+18], spERR [LLC23], tthREsh [BLP20],
and fpzip [LI06].

http://www.llnl.gov
mailto:info@llnl.gov

21

 2023 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.llnl.gov | info@llnl.gov

ZFP: FAST, ACCURATE DATA COMPRESSION FOR MODERN SUPERCOMPUTING APPLICATIONS

4. SUMMARY

zfp accelerates HPC calculations and lowers cost by dramatically reducing memory
and disk footprint, bandwidth requirements, and power usage. zfp is a compressed
and highly efficient number format offering a unique alternative to conventional
floating point in HPC applications. zfp is suitable for in-memory, in-transit, and offline
storage of correlated multidimensional array data, and offers significant reduction of
data volumes for accelerating and enabling memory capacity- and bandwidth-limited
computations. Additionally, zfp increases accuracy of many numerically sensitive
computations over alternative number formats and provides error controls that are
intuitive to application scientists, who can easily substitute floating-point array data
structures with zfp to achieve exact reductions in storage or levels of accuracy. zfp is
highly performant and scalable through massive data parallelism. It runs on CPU,
GPU, and accelerator hardware, and is available on Linux, macOS, and Windows
through language bindings such as C, C++, Python, and Fortran. Freely available as
open source, zfp has become a de facto standard compression solution in the HPC
community, with broad adoption in dozens of important commercial and academic
applications.

5. REFERENCES

[AAB+21] A. Abdelfattah, H. Anzt, E. Boman, E. Carson, T. Cojean, J. Dongarra, A. Fox,
M. Gates, N. Higham, X. Li, J. Loe, P. Luszczek, S. Pranesh, S. Rajamanickam,
T. Ribizel, B. Smith, K. Swirydowicz, S. Thomas, S. Tomov, Y. Tsai, U. Yang,
“A survey of numerical linear algebra methods utilizing mixed-precision
arithmetic,” International Journal on High Performance Computing
Applications, 35(4):344–369, 2021, doi:10.1177/10943420211003313.

[ATW+18] M. Ainsworth, O. Tugluk, B. Whitney, S. Klasky, “Multilevel techniques
for compression and reduction of scientific data-the univariate case,”
Computing and Visualization in Science, 19:65–76, 2018, doi:10.1007/
s00791-018-00303-9. Source code: github.com/CODARcode/MGARD.

[BAC96] A. Beers, M. Agrawala, N. Chaddha, “Rendering from Compressed
Textures,” ACM SIGGRAPH 96, doi:10.1145/237170.237276.

http://www.llnl.gov
mailto:info@llnl.gov
https://github.com/CODARcode/MGARD

22

 2023 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.llnl.gov | info@llnl.gov

ZFP: FAST, ACCURATE DATA COMPRESSION FOR MODERN SUPERCOMPUTING APPLICATIONS

[BAO19] M. Bamakhrama, A. Arrizabalaga, F. Overman, J.-P. Smeets, K. van der
Sommen, R. van der Vossen, J. Wagensveld, “GPU Acceleration of Real-Time
Control Loops,” arXiv:1902.08018v1, 2019, doi:10.48550/arXiv.1902.08018.

[BLP20] R. Ballester-Ripoll, P. Lindstrom, R. Pajarola, “tthresh: Tensor Compression
for Multidimensional Visual Data,” IEEE Transactions on Visualization
and Computer Graphics, 26(9):2891–2903, 2020, doi:10.1109/
TVCG.2019.2904063. Source code: github.com/rballester/tthresh.

[BWL+22] M. Barrow, Z. Wu, S. Lloyd, M. Gokhale, H. Patel, P. Lindstrom, “ZHW:
A Numerical CODEC for Big Data Scientific Computation,” FPT 2022,
doi:10.1109/ICFPT56656.2022.9974258. Source code: github.com/LLNL/zhw.

[DC16] S. Di, F. Cappello, “Fast error-bounded lossy HPC data compression with
sz,” IEEE IPDPS 2016, doi:10.1109/IPDPS.2016.11. Source code:
github.com/szcompressor/SZ3.

[DFH+19] J. Diffenderfer, A. Fox, J. Hittinger, G. Sanders, P. Lindstrom, “Error Analysis
of zfp Compression for Floating-Point Data,” SIAM Journal on Scientific
Computing, 41(3):A1867–A1898, 2019, doi:10.1137/18M1168832.

[FDH+20] A. Fox, J. Diffenderfer, J. Hittinger G. Sanders, P. Lindstrom, “Stability
Analysis of Inline zfp Compression for Floating-Point Data in Iterative
Methods,” SIAM Journal on Scientific Computing, 42(5):A2701–A2730, 2020,
doi:10.1137/19M126904X.

[GY17] J. Gustafson, I. Yonemoto, “Beating Floating Point at its Own Game: Posit
Arithmetic,” Supercomputing Frontiers and Innovations, 4(2):71–86, 2017,
doi:10.14529/jsfi170206.

[HBP+19] D. Hammerling, A. Baker, A. Pinard, P. Lindstrom, “A Collaborative Effort
to Improve Lossy Compression Methods for Climate Data,” IEEE DRBSD-5,
2019, 10.1109/DRBSD-549595.2019.00008.

[HEE+22] M. Habboush, A. H. El-Maleh, M. E. Elrabaa, S. AlSaleh, “DE-zfp: An FPGA
implementation of a modified zfp compression/decompression algorithm,”
Microprocessors and Microsystems, 90:104453, 2022, doi:10.1016/j.
micpro.2022.104453.

http://www.llnl.gov
mailto:info@llnl.gov
https://github.com/rballester/tthresh
https://github.com/LLNL/zhw
https://github.com/szcompressor/SZ3

23

 2023 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.llnl.gov | info@llnl.gov

ZFP: FAST, ACCURATE DATA COMPRESSION FOR MODERN SUPERCOMPUTING APPLICATIONS

[LCL16] P. Lindstrom, P. Chen, E.-J. Lee, “Reducing disk storage of full-
3D seismic waveform tomography (F3DT) through lossy online
compression,” Computers & Geosciences, 93:45–54, 2016, doi:10.1016/j.
cageo.2016.04.009.

[LDT+19] X. Liang, S. Di, D. Tao, S. Li, B. Nicolae, Z. Chen, F. Cappello, “Improving
Performance of Data Dumping with Lossy Compression for Scientific
Simulation,” IEEE CLUSTER 2019, doi:10.1109/CLUSTER.2019.8891037.

[LI06] P. Lindstrom, M. Isenburg, “Fast and Efficient Compression of Floating-
Point Data,” IEEE Transactions on Visualization and Computer Graphics,
12(5):1245–1250, 2006, doi:10.1109/TVCG.2006.143. Source code:
github.com/LLNL/fpzip.

[Lin14] P. Lindstrom, “Fixed-Rate Compressed Floating-Point Arrays,” IEEE
Transactions on Visualization and Computer Graphics, 20(12):2674–2683,
2014, doi:10.1109/TVCG.2014.2346458. Source code: github.com/LLNL/zfp.

[Lin17] P. Lindstrom, “Error Distributions of Lossy Floating-Point Compressors,”
JSM 2017 Proceedings. URL: osti.gov/biblio/1526183.

[Lin19] P. Lindstrom, “Compressed Numerics to Reduce Data Movement in
Numerical Simulations,” LDRD project final report. URL:
ldrd-annual.llnl.gov/archives/ldrd-annual-2018/computing/fs/18-FS-018.

[LJ22] S.-M. Lim, S.-W. Jun, “Mobile nets can be lossily compressed: Neural
network compression for embedded accelerators,” Electronics, 11(6):858,
2022, doi:10.3390/electronics11060858.

[LLC23] S. Li, P. Lindstrom, J. Clyne, “Lossy Scientific Data Compression With sperr,”
IPDPS 2023, doi:10.1109/IPDPS54959.2023.00104. Source code:
github.com/NCAR/SPERR.

[LLH+18] T. Lu, Q. Liu, X. He, H. Luo, E. Suchyta, J. Choi, N. Podhorszki, S. Klasky, M.
Wolf, T. Liu, Z. Qiao, “Understanding and Modeling Lossy Compression
Schemes on HPC Scientific Data,” IEEE IPDPS 2018, doi:10.1109/
IPDPS.2018.00044.

[Mar22] M. Martel, “Compressed Matrix Computations,” IEEE/ACM BDCAT 2022,
doi:10.1109/BDCAT56447.2022.00016. Source code:
github.com/mmartel66/blaz.

http://www.llnl.gov
mailto:info@llnl.gov
https://github.com/LLNL/fpzip
https://github.com/LLNL/zfp
https://www.osti.gov/biblio/1526183
https://ldrd-annual.llnl.gov/archives/ldrd-annual-2018/computing/fs/18-FS-018
https://github.com/NCAR/SPERR
https://github.com/mmartel66/blaz

24

 2023 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.llnl.gov | info@llnl.gov

ZFP: FAST, ACCURATE DATA COMPRESSION FOR MODERN SUPERCOMPUTING APPLICATIONS

[NVB+20] L. Noordsij, S. van der Vlugt, M. Bamakhrama, Z. Al-Ars, P. Lindstrom,
“Parallelization of Variable Rate Decompression through Metadata,”
Euromicro PDP 2020, doi:10.1109/PDP50117.2020.00045.

[RD15] D. Reed, J. Dongarra, “Exascale computing and big data,” Communications
of the ACM, 58(7):56–68, 2015, doi:10.1145/2699414.

[RZS+22] B. Ramesh, Q. Zhou, A. Shafi, M. Abduljabbar, H. Subramoni, D. Panda,
“Designing Efficient Pipelined Communication Schemes using Compression
in MPI Libraries,” IEEE HiPC 2022, doi:10.1109/HiPC56025.2022.00024.

[SDM10] J. Shalf, S. Dosanjh, J. Morrison, “Exascale computing technology
challenges,” International Conference on High Performance Computing
2010, doi:10.1007/978-3-642-19328-6_1.

[SJ19] G. Sun, S.-W. Jun, “zfp-V: Hardware-optimized lossy floating point
compression,” ICFPT 2019, doi:10.1109/ICFPT47387.2019.00022.

[SKJ20] G. Sun, S. Kang, S.-W. Jun, “BurstZ: a bandwidth-efficient scientific
computing accelerator platform for large-scale data,” ACM/IEEE SC 2020,
doi:10.1145/3392717.3392746.

[SKJ22] G. Sun, S. Kang, S.-W. Jun, “BurstZ+: Eliminating the communication
bottleneck of scientific computing accelerators via accelerated
compression,” ACM Transactions on Reconfigurable Technology and
Systems, 15(2):1–34, 2022, doi:10.1145/3476831.

[Std19] IEEE Std 754-2019: IEEE Standard for Floating-Point Arithmetic, 2019,
doi:10.1109/IEEESTD.2019.8766229.

[TBP+21] H. Tang, S. Byna, A. Petersson, D. McCallen, “Tuning Parallel Data
Compression and I/O for Large-scale Earthquake Simulation,” IEEE Big Data
2021, doi:10.1109/bigdata52589.2021.9671876.

[UBK+23] R. Underwood, J. Bessac, D. Krakowska, J. Calhoun, S. Di, F. Cappello, “Black-
Box Statistical Prediction of Lossy Compression Ratios for Scientific Data,”
arXiv:2305.08801, 2023, doi:10.48550/ arXiv.2305.08801.

[Wal92] G. Wallace, “The JPEG still picture compression standard,” IEEE Transactions
on Consumer Electronics, 38(1):xciii–xxxiv, 1992, doi:10.1109/30.125072.

http://www.llnl.gov
mailto:info@llnl.gov

25

 2023 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.llnl.gov | info@llnl.gov

ZFP: FAST, ACCURATE DATA COMPRESSION FOR MODERN SUPERCOMPUTING APPLICATIONS

[ZCK+21] Q. Zhou, C. Chu, N. Kumar, P. Kousha, S. Ghazimirsaeed, H. Subramoni,
D. Panda, “Designing High-Performance MPI Libraries with on-the-fly
Compression for Modern GPU Clusters,” IEEE IPDPS 2021, doi:10.1109/
IPDPS49936.2021.00053.

[ZDL+20] K. Zhao, S. Di, X. Lian, S. Li, D. Tao, J. Bessac, Z. Chen, F. Cappello,
“SDRBench: Scientific Data Reduction Benchmark for Lossy Compressors,”
IEEE Big Data 2020, doi:10.1109/BigData50022.2020.9378449. URL:
sdrbench.github.io.

[ZKA+22] Q. Zhou, P. Kousha, Q. Anthony, K. Khorassani, A. Shafi, H. Subramoni,
D. Panda, “Accelerating MPI All-to-All Communication with Online
Compression on Modern GPU Clusters,” ISC High Performance 2022,
doi:10.1007/978-3-031-07312-0_1.

http://www.llnl.gov
mailto:info@llnl.gov
https://sdrbench.github.io

26

 2023 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.llnl.gov | info@llnl.gov

ZFP: FAST, ACCURATE DATA COMPRESSION FOR MODERN SUPERCOMPUTING APPLICATIONS

6. ADDITIONAL SUPPORTING INFORMATION

Video: youtu.be/09Jl2ggiDuY

Documentation:

Website: zfp.llnl.gov

User documentation: zfp.readthedocs.io/en/release1.0.0/

Open-source code: github.com/LLNL/zfp

7. AFFIRMATION

I/we certify that all of the information within this submission entry is accurate and
represents the most up-to-date information available for this entry.

Signature Date

June 1, 2023

http://www.llnl.gov
mailto:info@llnl.gov
https://youtu.be/09Jl2ggiDuY
https://zfp.llnl.gov
https://zfp.readthedocs.io/en/release1.0.0/
http://github.com/LLNL/zfp

27

 2023 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.llnl.gov | info@llnl.gov

ZFP: FAST, ACCURATE DATA COMPRESSION FOR MODERN SUPERCOMPUTING APPLICATIONS

8. CONTACTS

Principal investigator:

Peter Lindstrom
Computer Scientist
Lawrence Livermore National Laboratory
pl@llnl.gov
925.423.5925

Development team:

Danielle Asher
Computer Scientist
Lawrence Livermore National Laboratory
morrison32@llnl.gov
925.423.8352

Matthew Larsen
Developer
Former Lawrence Livermore National
Laboratory Employee
larsen.matt1@gmail.com
530.902.1033

Markus Salasoo
Senior Software Engineer
Former Lawrence Livermore National
Laboratory Employee
salasoom@gmail.com
518.698.6515

Stephen Herbein
Senior Systems Software Engineer
Former Lawrence Livermore National
Laboratory Employee
stephen@herbein.net
302.893.8577

Mark Miller
Computer Scientist
Lawrence Livermore National Laboratory
miller86@llnl.gov
925.423.5901

Media and marketing contact:

Mary Holden-Sanchez
Business Development and Marketing Associate
Lawrence Livermore National Laboratory
holdensanchez2@llnl.gov
925.422.4614

http://www.llnl.gov
mailto:info@llnl.gov

28

 2023 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY | www.llnl.gov | info@llnl.gov

ZFP: FAST, ACCURATE DATA COMPRESSION FOR MODERN SUPERCOMPUTING APPLICATIONS

Person who will handle R&D 100 Awards Event arrangements:

Peter Lindstrom
Computer Scientist
Lawrence Livermore National Laboratory
pl@llnl.gov
925.423.5925

Organization’s LinkedIn profile URL:
linkedin.com/company/lawrence-livermore-national-laboratory

Organization’s Twitter handle:
twitter.com/Livermore_Lab
twitter.com/Livermore_Comp

Organization’s Facebook page URL:
facebook.com/livermore.lab

Additional social media URLs for your organization
instagram.com/livermore_lab

http://www.llnl.gov
mailto:info@llnl.gov
http://linkedin.com/company/lawrence-livermore-national-laboratory
http://twitter.com/Livermore_Lab
http://twitter.com/Livermore_Comp
http://facebook.com/livermore.lab
http://instagram.com/livermore_lab/

