LLNL scientists have designed a rapid PCR technology that incorporates the use of microfluidic thermal heat exchanger systems and is comprised of a porous internal medium, with two outlet channels, two tanks, and one or more exchanger wells for sample receiving. The wells and their corresponding inlet channels are coupled to two tanks that contain fluid with cold and hot temperatures. A controller is used to dictate the position of the fluid pump’s valves, which directs fluid flow between tanks. The fluid passes though the system’s porous medium, heating or cooling the samples being housed in the wells. When the fluid passes through the matrix, it provides extremely fast heat conduction that enables rapid thermal transfer between the fluid, matrix, and sampler holder. This technique has considerably higher heating/cooling temperatures ramps and it can produce very uniform temperatures utilizing lower input power than prior equipment. By keeping samples at optimal temperatures, researchers can expect a higher sample throughput and better quality, resulting in more reliable data.

US Patents 9,170,028 and 9,939,170 “Methods and compositions for rapid thermal cycling” (LLNL internal case # IL-12328).