MBD captures the complete specification of a part in digital form and leverages (at least) the universal STEP file format. MBD has revolutionized manufacturing due to time and cost savings associated with containing all engineering data within a single digital source. LLNL researchers have been able to develop a novel encoding method to transform digital definitions in…
TART2022 is an update of the previously released TART2016 software package. TART2022 maintains the same physics as TART2016 but modernizes the code and includes the latest ENDF/B-VIII.0 nuclear data, which is publicly available. So in short, no physics changes, just new ENDF nuclear data.
TART2022 supersedes all older versions of TART, and it is strongly recommended that users only use…
Historically, reactive transport models have provided important simulation results on the mobility and fate of radionuclides in subsurface geologic systems. The effectiveness of these models depends in part on surface complexation models (SCMs) that provide geochemically informed sorption-based retardation information. This work demonstrates a first-of-its-kind hybrid random…
The Lawrence Livermore National Laboratory Surface Complexation Database Converter (SCDC) is a R-based script that creates a unified dataset of surface complexation experimental data with respective parameters and results. To provide context, it is commonly understood in the data science community that gathering and cleansing data can take up to 80% of the time in analytics - with the…
CRETIN is a 1D, 2D, and 3D non-local thermodynamic equilibrium (NLTE) atomic kinetics/radiation transport code which follows the time evolution of atomic populations and photon distributions as radiation interacts with a plasma consisting of an arbitrary mix of elements. It can provide detailed spectra for comparing with experimental diagnostics.
Autopack is an open-source python tool that enables the automatic labeling of packing motifs for large and chemically diverse datasets of molecular crystals. Autopack takes advantage of geometric descriptors to find useful cross-sections within the crystal structure to elucidate the associated packing motif. Autopack is capable of processing either crystallographic information files (CIFs) or…
LLNL is seeking industry partners to collaborate on quantum science and technology research and development in the following areas: quantum-coherent device physics, quantum materials, quantum–classical interfaces, computing and simulation, and sensing and detection.
To solve these challenges using new and existing CT system designs, LLNL has developed an innovative software package for CT data processing and reconstruction. Livermore Tomography Tools (LTT) is a modern integrated software package that includes all aspects of CT modeling, simulation, reconstruction, and analysis algorithms based on the latest research in the field. LTT contains the most…
The OneID solution combines custom-developed code with proven commercial software to provide three core components; (1) back-end processes and administrative utilities to reconcile identity data received from multiple partners within an organization into a single unique identifier; (2) an interface that dynamically displays authentication options to the user based on the assurance level…
Customized for industrial uses, the ALE3D4I code allows a user to not only switch between the Lagrangian and Eulerian techniques but also combine the two so that the mesh “relaxes” at the leading edge of the object. The amount of relaxation is determined by the user, who can “weight” the simulation so that more zones are forced into a specific area of interest, for greater accuracy at that…
ParaDiS, or Parallel Dislocation Simulator, is a simulation tool that performs direct numerical simulation of dislocation ensembles, the carriers of plasticity, to predict the strength in crystalline materials from the fundamental physics of defect motion, evolution, and interaction.
“NUFT (Nonisothermal, Unsaturated Flow and Transport) is a 3D multi-phase non-isothermal flow and transport model for both saturated and unsaturated simulations. It has been extensively applied to groundwater cleanup (especially thermal alternatives), deep geologic processes, including high level nuclear waste repositories and subsurface sequestration of carbon dioxide.”
Antennas are a foundational component of our global communication and information systems. Cell phones, Wi-Fi networks, and satellite links couldn’t exist without them. LLNL scientists, Gerald Burke, Andrew Poggio, and Edward Miller created the Numerical Electromagnetic Code (NEC), an antenna modeling system for wire and surface antennas. As computer capability to handle heavy calculations…
This technology provides algorithms that accurately localize small-arm-fire by tracking bullets from high-powered weapons, automatic rifles, rocket propelled grenades (RPGs), mortars, and similar projectiles. The software integrates commercially available infrared video cameras, processes raw imagery data, detects and tracks projectiles, and determines the location of the shooters within…