Image

Livermore Lab researchers have developed a new EUV target design that replaces liquid tin droplets with tin microbeads embedded in a low Z tamping fluid. The use of low Z liquid tamped targets can solve several problems that are currently faced by the industry. It can increase the total operational uptime from 80% to close to 100%. It can simplify EUV source design and reduce…

Image
Livermore Lab researchers have developed two new methods for improving the efficiency of laser drilling. The first method is based on multi-pulse laser technology. Two synchronized free-running laser pulses from a tandem-head Nd:YAG laser and a gated CW laser are capable of drilling through 1/8-in-thick stainless-steel targets at a standoff distance of 1 m without gas-assist. The combination of a…
Image

LLNL researchers have developed a method in which a sleeveless photonic crystal optical fiber cane can be fabricated. A set of glass canes and capillaries, doped or un-doped, are stacked into a hexagonal pre-form. A piece of outer tube which is much shorter than the pre-form, but longer than the "hot zone" of a draw tower furnace, is placed around the pre-form on either end, and crimped to the…

Image

LLNL's invention uses energy efficient diode arrays for softening metals and alloys to enable friction stir process and friction stir welding. The use of intense light from compact, light-weight, and energy-efficient diode arrays to preheat the material being processed to the softening point eliminates defects associated with insufficient weld temperature such as tunnel voids.

The…

Image

The new LLNL technique works by transiently removing and trapping concrete or rock surface material, so that contaminants are confined in a manner that is easy to isolate and remove. Our studies suggest that 10 m2 of surface could be processed per hour. The technique easily scales to more surface/hr.

Image

This technology comprises a method of depositing coatings of dissimilar materials on a substrate. A laser pulse hits the film of deposited material covered by a thin water layer. The laser deposition on the water-material interface generates huge pressure accelerating film to the velocities a few hundred meters per second. The film hits the substrate at an oblique angle. The high velocity of…