This portfolio was organized to group innovations that might not be categorized in the other portfolios. Instruments are full systems integrated to perform complex electrical or mechanical work. Sensors are devices that detect, measure, or locate a physical property. Electronics are devices that manipulate electrons or control electrical energy, and the manufacturing processes that fabricate them.
Portfolio News and Multimedia
The Department of Energy’s Technology Transfer Working Group recently awarded two Lawrence Livermore National Laboratory (LLNL) employees with “Best in Class” awards during their May spring meeting in Washington, D.C.
A trio of LLNL scientists have been inducted into the laboratory's Entrepreneur's Hall of Fame. Each developed technologies during or after their Lab careers that created major economic impacts or spawned new companies.
Lawrence Livermore National Laboratory scientists and engineers have collected three R&D 100 Awards. Often called the “Oscars of invention", the R&D 100 Awards recognize the top 100 industrial inventions worldwide.
Instruments, Sensors, and Electronics Technologies
Areas of Focus
LLNL has developed a method of extending device lifetimes by imprinting into the device a shape that excludes specific vibrational modes, otherwise known as a phononic bandgap. Eliminating these modes prevents one of the primary energy loss pathways in these devices. LLNL’s new method enhances the coherence of superconducting circuits by introducing a phononic bandgap around the system’s…
LLNL is seeking industry partners to collaborate on quantum science and technology research and development in the following areas: quantum-coherent device physics, quantum materials, quantum–classical interfaces, computing and simulation, and sensing and detection.
To solve these challenges using new and existing CT system designs, LLNL has developed an innovative software package for CT data processing and reconstruction. Livermore Tomography Tools (LTT) is a modern integrated software package that includes all aspects of CT modeling, simulation, reconstruction, and analysis algorithms based on the latest research in the field. LTT contains the most…
Recent advancements in additive manufacturing, also called 3D printing, allow precise placement of materials in three dimensions. LLNL researchers have invented mechanical logic gates based on flexures that can be integrated into the microstructure of a micro-architected material through 3D printing. The logic gates can be combined into circuits allowing complex logic operations to be…
LLNL's 3D X-ray imager combines two different hardware pieces. The first is an x-ray optic with a depth-of-field that is small compared to the object under investigation. Reflective Wolter type x-ray optics are one such design. These hollow optics have a relatively large collection efficiency and can be designed with a large field of view. The depth of focus, which is the distance over which a…
LLNL researchers have designed and tested performance characteristics for a multichannel pyrometer that works in the NIR from 1200 to 2000 nm. A single datapoint without averaging can be acquired in 14 microseconds (sampling rate of 70,000/s). In conjunction with a diamond anvil cell, the system still works down to about 830K.
LLNL researchers have developed a broadband heterodyne detection system that incorporates several significant improvements that move the state of the art toward quantum noise limited performance. The design comprises of an optical element that increases the intensity of the incoming light on the detector by a factor exceeding 50x. It is based on the properties of surface plasmons in…
LLNL has developed a reference electrode that is a great improvement on the widely used silver or platinum wire QRE commonly used in electrochemistry in ionic liquids. This new reference electrode, based on a silver-sulfide coated silver wire, exhibits greatly improved stability over a QRE. The stability of our RE approaches that of the Ag/Ag+ RE, but unlike the Ag/Ag+ RE, the RE reported here…
LLNL's method of equivalent time sampling incorporates an embedded system that generates the pulses used to trigger the external circuit and the data acquisition (DAQ). This removes the external reference clock, allowing the overall system clock rate to change based on the ability of the embedded system. The time delays needed to create the time stepping for equivalent time sampling is done by…
LLNL’s Optically-based Interstory Drift Meter System provides a means to accurately measure the dynamic interstory drift of a vibrating building (or other structure) during earthquake shaking. This technology addresses many of the shortcomings associated with traditional strong motion accelerometer based building monitoring.
LLNL’s discrete diode position sensitive device is a newly…
This invention suggests to reduce the noise in Q-bits and other low-noise electronic and superconducting devises devices by synthesizing special materials where several classes of fluctuators (two-level systems) are excluded (or, their number is substantially reduced) both in the volume of materials and on the boundaries and interfaces. This invention also suggests materials with low number of…
A key element of this invention is the recognition that all life-important chemical interaction is situated in the mid-to-far infrared energy range. LLNL’s Infrared (IR) Photon-Sensitive Spectromicroscopy invention is a system designed to suppress thermal radiation background and to allow IR single photon-sensitive spectromicroscopy of small samples by using absorption, reflection, and…
LLNL researchers have combined Raman and infrared (IR) spectroscopy methods in a single device. The sensor is able to detect, identify, and quantify a range of unknown gases. Raman spectroscopy records the degree of light scattered while IR measures the amount of light that is absorbed. The combination of the two techniques results in complementary spectra that serve as molecular-level…
The LLNL approach uses both the electric and magnetic components of an electromagnetic wave, which provides information about the direction of wave emanation as well as the flux of energy in the wave. This new, potentially portable technology is intended to identify and locate low-frequency electromagnetic noise sources in order to take off-line or quickly isolate and repair the interfering…
The technology that is available has the capability to inject realistic radiation detection spectra into the amplifier of a radiation detector and produce the all the observables that are available with that radiation detection instrument; count-rate, spectrum, dose rate, etc.
The system uses the capability of LLNL to generate the source output for virtually any source and determine…
LLNL's high fidelity hydrocode is capable of predicting blast loads and directly coupling those loads to structures to predict a mechanical response. By combining this code and our expertise in modeling blast-structure interaction and damage, along with our access to experimental data and testing facilities, we can contribute to the design of protective equipment that can better mitigate the…
The Forensic Science Center at LLNL has invented a portable, compact and rugged hydrogen peroxide vapor generator. The system produces a consistent concentration of hydrogen peroxide vapor. The hydrogen peroxide vapor is generated from a safe and easy to maintain source of aqueous hydrogen peroxide and produces a dynamic flow stream at discrete concentrations.
The technology is an outgrowth of the world's fastest solid-state digitizer, which was designed to measure sub-nanosecond events generated by fusion experiments on the Laboratory's Nova laser. MIR is based on the radiation of short voltage impulses that are reflected off nearby objects and detected by MIR's extremely high-speed sampling receiver. Prototype units emit one million impulses per…
The Optical Transconductance Varistor (Opticondistor) overcomes depletion region voltage limitations by optically exciting wide bandgap materials in a compact package. A 100μ thick crystal could have the capability approaching 40kV and would replace numerous equivalent junction devices. Thus, unlike present junction transistors or diodes, this wide bandgap device can be…
This technology is an extremely small and robust cell in which a very small volume of gas is sampled, while maintaining high sensitivity and specificity, by combining it with:
- Highly tunable and commercially available semiconductor lasers, such as edge emitting lasers and vertical cavity surface emitting lasers (to provide various absorption lines of one specie and to capture…
LLNL has developed a compact and low-power cantilever-based sensor array, which has been used to detect various vapor-phase analytes. For further information on the latest developments, see the article "Sniffing the Air with an Electronic Nose."
The invention relates to a measurement method and system for capturing both the amplitude and phase temporal profile of a transient waveform or a selected number of consecutive waveforms having bandwidths of up to about 10 THz in a single shot or in a high repetition rate mode. The invention consists of an optical preprocessor which can then output a time-scaled replica of the input signal to…
This electrostatic (E-S) generator/motor operates through the time-variation of the capacity of an electrically charged condenser to generate AC voltages and/or mechanical torque. The output of the generator is such that it can take advantage of the development of high-voltage solid-state electronic components now coming into wide use in the electrical utilities.
This technology provides algorithms that accurately localize small-arm-fire by tracking bullets from high-powered weapons, automatic rifles, rocket propelled grenades (RPGs), mortars, and similar projectiles. The software integrates commercially available infrared video cameras, processes raw imagery data, detects and tracks projectiles, and determines the location of the shooters within…