This is a broad portfolio that includes all aspects of life sciences. Some of the representative areas are bioengineering (brain computer interface, chips to grow and monitor cellular activities, and bioprinting), vaccines and therapeutics (nanolipoprotein particles for the delivery of vaccines and drugs, carbon nanotubes for drug delivery, KRAS inhibitors, and anti-bacterial minerals), medical diagnostics (molecular diagnostics, point-of-care testing, imaging, and forensic), life science instrumentation (PCR instruments, rapid PCR, fluid partitioning, microfluidics, and biosensors), and methods for the extraction and purification of rare earth elements using lanmodulin and other natural/synthetic bacterial proteins.

Portfolio News and Webcast

Image
LLNL Expands Livermore Valley Open Campus

Leaders from the National Nuclear Security Administration, Congressional representatives and local elected officials gathered at Lawrence Livermore National Laboratory to celebrate the expansion of the Livermore Valley Open Campus.

Image
LLNL-Developed Thin-Film Electrodes Reveal Key Insight into Human Brain Activity

Thin-film electrodes developed at Lawrence Livermore National Laboratory have been used in human patients at the University of California, San Francisco, generating never-before-seen recordings of brain activity in the hippocampus, a region responsible for memory and other cognitive functions.

Image
Shape Memory Polymer Technology

Interested to learn more about LLNL licensee Shape Memory Medical? This article highlights the development of the IMPEDE embolization plug product developed with shape memory polymer innovations from LLNL. 

Life Sciences, Biotech, and Healthcare Technologies

Image

The steady-state phenomenon generates thousands of microdroplets per second which is a problem when the stream of droplets needs to be slowed down or stopped. LLNL technology provides a method for generating and trapping microdroplets at a desired location and subsequently stopping the stream of microdroplets without droplet coalescence. These microdroplets can then be…

Image

Researchers at LLNL have created a new technology for performing pumping and valving operations in microfabricated fluidic systems. Traditional microfabricated devices have some disadvantages that defeat the advantages of miniaturization. For example, they require high power and voltage, and they need specific fluids to work properly and to be broadly applicable. The technology…

Image

Researchers at LLNL have invented a new method for forming microfluidic system platforms that allow the incorporation of various microfluidic devices into a single unit. The method involves creating channels, reservoirs, and ports using a polymer-based platform that allows for the interconnection of building blocks. Pre-fabricated structures such as T’s and elbows are used to…

Image
Researchers at LLNL have developed a new method to utilize highly selective molecular recognition events to attach proteins to any solid support through the C-terminus. The approach is based on the use of protein trans-splicing, which is a naturally occurring process similar to protein splicing with the difference that the intein (e.g., DnaE intein from Synechocystis sp. PCC6803) self-processing…
Image

This LLNL-developed invention is multiplexed and utilizes the Luminex bead-based liquid array, which contains 100 different unique beads. Oligonucleotide probes with sequences complementary to the target sequences are covalently coupled to these unique beads. These capture beads are mixed with viral samples obtained from the patient via cheek swabbing or a throat wash and subjected to PCR in a…

Image

Researchers at LLNL have developed a novel method to express and purify significant quantities of AMPs. AMP is fused to the N-terminus of a self-assembling protein called encapsulin from Thermotoga maritima, which forms protein cages with 60 monomer units. N-terminal fusion of the peptide to encapsulin results in encapsulation of the peptide within the protein cage, which prevents cytotoxicity…

Image

LLNL’s carbon nanotube trans-membrane channels invention is a new class of nanopores that combines the best features of all three existing types of pores while substantially mitigating a number of shortcomings exhibited by each of these types of pores.

The method involves sonication of nanotube in presence of lipids, including but not limited to DOPC or DPhPC. One advantage of this…

Image

LLNL has developed a novel process of production, isolation, characterization, and functional re-constitution of membrane-associated proteins in a single step. In addition, LLNL has developed a colorimetric assay that indicates production, correct folding, and incorporation of bR into soluble nanolipoprotein particles (NLPs).

LLNL has developed an approach, for formation of NLP/…

Image

Solid-state distributed node-based rapid thermal cycler for extremely fast nucleic acid amplification (LLNL Internal Case # IL-12275, US Patent

Image

Laser heating of aqueous samples on a micro-optical-electro-mechanical system (LLNL Internal Case # IL-11719, US Patents

Image

LLNL researchers have designed a synthetic, concatemeric bacterial expression vector that expresses a protein sequence that can be digested into a single peptide. The synthetic protein is designed to be secreted outside E. coli cells, and therefore can be purified using a His-tag from the cell supernatant (thereby reducing the need to lyse the cells for…

Image

LLNL scientists have created a technology that utilizes electrical means, instead of optical methods, to (1) provide label-free detection of droplet morphology; (2) manipulate droplet position through trapping and actuation; (3) track individual droplets in a heterogeneous droplet population; and (4) generate droplets with target characteristics automatically without optical…

Image

This device allows for observation of single cells encapsulated in droplets and provide the ability to recover droplets containing a cell of interest. This system provides the unique capability to monitor droplet contents from a few minutes to hours and overcome the limitations of the fluorescence activated cell sorting (FACS) in the purification of cell populations.…

Image

This invention consists of a functionalized membrane (e.g. polyethylene glycol (PEG)) and osmosis or electric potential as a driving force. The PEG membrane provides high biological particles separation and prevents sample for clogging due to the strong hydration of functional polymers layer and their resistance to protein adsorption.…

Image

This invention is an improved chromatography device that utilizes the concept of a functionally graded material (FGM) for separation of components. The technology consists of a device that contains a FGM that is patterned to have a gradient in material properties (e.g. chemical affinity, surface chemistry, chirality, pore size, etc.) normal to the direction of flow of the…

Image

The art described here incorporates a planar integrated optical system that allows for multiple biochemical assays to be run at the same time or nearly the same time. Briefly, each assay can include one or more tags (e.g. dyes, other chemicals, reagents) whose optical characteristics change based on…

Image

This technology describes a method for partitioning fluid into “packets” between polymeric sheets. The fluid to be partitioned is introduced between two polymeric layers or within a polymeric channel and the layers are sealed together to form an array or sequence of individual milliliter to picoliter samples as shown in figure below. This approach allows a…

Image

LLNL researchers have developed a variation of AMS technology that improves sample preparation, analysis, and cost for AMS. The device involves depositing liquid samples on an indented moving wire and passing the moving wire through a combustion oven to convert the carbon content of samples to carbon dioxide gas in a helium stream. The gas is then directed via a capillary to…

Image

LLNL has invented a new high-throughput assay for sample separation that uses the vibrations of a piezoelectric transducer to produce acoustic radiation forces within microfluidic channels. The system includes a separation channel for conveying a sample fluid containing the different size particles, an acoustic transducer and a recovery fluid stream. The polymeric…

Image

LLNL researchers have developed an apparatus capable of measuring and recording ultraviolet radiation that uses the Schottky diode/ZnSe/metal type UV sensor. This device can detect both UV-A (320-400nm) and UV-B(280-320nm) radiation. The present invention can also measure and accumulate doses with good sensitivity, and it can also store and make available the readings to be…

Image

The invention developed by LLNL researchers proposes to use staged isotachophoresis to improve sample separation. One of the problems with isotachophoresis is that there is a tradeoff between the diameter of the separation column and the ability to isolate a species into a detectable band. For example, wider diameter channels run faster, but narrower channels provide better…

Image

LLNL researchers have devolved a technique to separate or purify samples using electrophoretic separation. This invention corrects the problem associated with pH changes by using the electrode, which contacts the sample, itself a high-conductivity electrolyte made of liquid or gel materials. This will keep the metal surface electrochemistry physically remote from the sample,…

Image

Researchers at LLNL have developed a more efficient and cost-effective method and system for synthesizing a critical D-aminoluciferin precursor and related compounds. D-aminoluciferin is as active as luciferin and provides a free -NH2 group for functionalization to attach peptide sequences corresponding to the cleavage site of a protease. This allows for the synthesis of…

Image

LLNL's technology employs improved sorting strategies related to chip-based droplet sorting. This technology uses electromagnetic fields and non-contact methods to sort and identify monodispersed water-in-oil emulsion droplets in a microfluidic chip-based device. The system selects individual droplets from a continuous stream based on optical or non-optical detection…

Image

Researchers at LLNL have developed a method to passively sort individual microdroplet samples of uniform size based on stiffness and viscosity. Unlike electrical or optical methods for droplet sorting, this apparatus does not require a measurement step. Instead, particle separation occurs through changes in shearing forces determined by the stiffness of the particles in the…

Image

LLNL researchers have created a method that uses isotachophoresis for the exclusion and or purification of nucleic acids. Isotachopheresis (ITP) is an electrophoretic separation technique that leverages a heterogeneous buffer system of disparate electrophoretic mobilities. The researchers created a transverse ITP system that offers high-throughput sample preparation as the amount…

Image

Proteins and other functional molecules can often be synthesized in significant quantities, but their purification presents challenges. Also, many chemical/biological sensor technologies require that a small number of nanometer-sized molecules be filtered prior to being exposed to molecular recognition chemistries.

Image

The present invention uses magnetic fields to hold particles in place for faster DNA amplification and sequencing. This invention provides a method for faster DNA sequencing by amplification of the genetic material within microreactors, denaturing and de-emulsifying and then sequencing the material while retaining it in the PCR/sequencing zone by a magnetic field.…

Image

This invention is designed to sort and identify complex samples using parallel nucleic acid characterization. By isolating single or double stranded nucleic acids derived from complex samples, researchers can sequence previously unknown genetic material to identify novel viruses and organisms. The chip-based microfluidic system achieves this through microdroplet PCR amplification,…

Image

This technology is a photonic detection system developed by researchers at LLNL for the detection of biological or chemical threats with the intention of combining the collection, concentration and detection process onto a single platform. The present invention consists of a porous membrane containing flow-through photonic silicon crystals (see figure).

Image

The described invention is a miniature fluidic device for separating particles suspended within a liquid sample that is introduced into the interior volume of the device. The device uses laminar flow and a combination of gravity and acoustic, electrophoretic, dielectrophoretic, and diffusion-based processes in concert to separate the different particle types and allow them to be…

Image

Researchers at LLNL have developed a nanotube sensor (single-walled or multi-walled carbon nanotubes) enclosed within a highly selective lipid bilayer that can detect variations in ion transport using signal amplification generated from the disruption of protein pores across the lipid layer. Changes in the device’s transistor current are recorded by an external circuit with high…

Image
The team’s prototype is intended to be safe, simple and easy to build, while still achieving the minimally required functionality necessary to treat patients with COVID-19. The ventilator has two functional air flow circuits: an inhalation and an exhalation circuit (Figure 1). The pressure in each circuit—Peak Inspiratory Pressure (PIP) and Positive End-Expiratory Pressure (PEEP)—are controlled…
Image

LLNL scientists developed novel hydrogels, which are biodegradable soft materials synthesized by a water-soluble polymer. Incorporating silver imparts antimicrobial activity to the material at low concentration compared to currently used silver nanoparticles. Our hydrogels are composed of silver ions instead of silver nanoparticles, which eliminates the toxicity concerns of modern silver…

Image

LLNL researchers have developed a portable device which analyzes one or multiple types of body fluids or gases to test for one or more medical conditions. A bodily fluid (such as blood, perspiration, saliva, breath, or urine) is put into a condenser surface and is then separated into both a primarily gas fluid component and a second one that is primarily liquid. These two samples from the same…

Image

LLNL scientists have developed a high-confidence, real-time multiplexed reverse transcriptase PCR (RT-PCR) rule-out assay for foot and mouth disease virus (FMDV). It utilizes RT-PCR to amplify both DNA and RNA viruses in a single assay to detect FMDV as well as rule out other viruses that cause symptoms in livestock indistinguishable from those caused by FMDV, such as Bovine Herpes Virus-1 (…

Image

LLNL scientists have developed a technology which fulfills this need. The LLNL technology itself is comprised of two elements which are to be embedded in a user's personal electronic device (e.g. cell phone, tablet device, pager, etc.). The first is a proximity monitor which transmits location and temporal data such as the distance between the user and a contagious individual and the duration…

Image

LNLL scientists have invented a method for multiplexed detection of PCR amplified products which can be completed in a single step. Highly validated species-specific primer sets are used to simultaneously amplify multiple diagnostic regions unique to each individual pathogen. Resolution of the mix of amplified products is achieved by PCR product hybridization to corresponding probe sequences,…

Image

LLNL scientists have developed a rapid parallel genetic profiling technology that can be used to detect an array of pathogens from a small, complex sample. Detectable pathogens by the LLNL technology include viruses, bacteria, protozoa, and other microbes. The device works by first splitting a given sample into millions of emulsified, encapsulated microdroplets each of which are then split…

Image

LLNL scientists have developed a method to ensure the accuracy of that tomographic image by applying adaptive optics (AO) to OCT in a single instrument (AO-OCT). AO stabilizes the image being captured by the OCT device by utilizing a Hartmann-Shack wavefront sensor and a deformable mirror, a type of mirror designed to compensate for detected waveform abnormalities (such as ones caused by a…

Image

LLNL researchers have developed a method to quickly and accurately identify the family of a virus infecting a vertebrate via PCR. Universal primer sets consisting of short nucleic acid strands of 7 to 30 base pairs in length were created to amplify target sequences of viral DNA or RNA. These primers can amplify certain identifying sequences of all viral genomes sequenced to date as well as…

Image

LLNL researchers have invented a system for identifying all known and unknown pathogenic or non-pathogenic organisms in a sample. This invention takes a complex sample and generates droplets from it. The droplets consist of sub-nanoliter volume reactors which contain the organism sized particles. A lysis device lyses the organisms and releases the nucleic acids. An amplifier then magnifies the…

Image

LLNL scientists have created a standalone pathogen identifier that can be placed in public settings, such as in stores or on street corners. Not unlike an ATM in physical size, this kiosk will accept biological samples from an individual for multiplexed analysis. The sample collection process will be sufficiently simple such that anyone could begin the diagnostic process after making the…

Image

LLNL scientists have developed a method to synthesize long DNA sequences of varying length starting from short oligos. Synthetic oligos are generated using bioinformatics tools by overlapping multiple small segments, such as 4-mers or 6-mers, derived from both strands of the source DNA strand. DNA polymerases fill the gaps between these short n-mers to create the new, longer DNA strand. This…

Image

LLNL scientists have developed a battery-powered device which is low-cost and multi-chambered for the extraction and amplification of nucleic acids from environmental, clinical, and laboratory samples via loop-mediated isothermal amplification (LAMP). This platform identifies pathogenic bacteria and assists in determining the optimal treatment plan. A multi-chamber amplification cartridge in…

Image

LLNL scientists have invented a method that is able to identify SE specific sequences that can be utilized as diagnostics markers. The method, called suppression subtractive hybridization (SSH), is a PCR-based technique that identifies restriction fragments that are present in the target strain but not other strains. A set of restriction enzymes specific to the target species isolates their…

Image

LLNL researchers have discovered unique DNA signatures that can be used to identify, with high specificity, three such organisms with bio-weapon potential, including Yersinia pestis and Francisella tularensis (both Category A agents), and Brucella species (Category B agent). The DNA sequence information of a desired region of an organism unique to that organism is recorded, a DNA primer is…

Image

The LLNL invention has two assay chambers wherein each chamber is comprised of another two chamber modules. This allows the device to process up to two assays per chamber module, or four total assays per biological sample. These two duplex assays are each fed by parallel interrogation ports while the device still maintains a small physical profile. Each port has its own LED for excitation,…

Image

DEPOSITING BULK OR MICRO-SCALE ELECTRONICS (IL12387, US Patent 9,485,873 and US patent Application US2017/0013713)

This invention provides thicker electrodes on microelectronic devices using thermo-compression bonding…

Image
Adhesive Actuated Insertion Shank

RIGID STIFFENER-REINFORCED FLEXIBLE NEURAL PROBES, AND METHODS OF FABRICATION USING WICKING CHANNEL-DISTRIBUTED ADHESIVES AND TISSUE INSERTION AND EXTRACTION (IL12469, US Patent Application US2014/0378993)

This invention is superior to silicon based…

Image

SERPENTINE AND CORDUROY CIRCUITS TO ENHANCE THE STRETCHABILITY OF A STRETCHABLE ELECTRONIC DEVICE (IL11169, US Patents 7,265,298 and 7,871,661)

STRETCHABLE POLYMER-BASED ELECTRONIC DEVICE (IL11206, US Patent…

Image

IMPLANTABLE NEUROMODULATION SYSTEM FOR CLOSED-LOOP STIMULATION AND RECORDING SIMULTANEOUSLY AT MULTIPLE BRAIN SITES (IL13065; PCT Application WO2017100649)

This technology relates to a modular system for deep brain stimulation (DBS) and electrocorticography (ECoG). The system has an implantable…

Image

HIGH DENSITY POLYMER-BASED INTEGRATED ELECTRODE ARRAY (IL11207, US Patent 7,035,692)

This invention is a high-density polymer-based integrated electrode apparatus that comprises a central electrode body and multiple arms extending from the electrode body. The central electrode body with multiple arms is…

Image

MULTI-ELECTRODE NEURAL PROTHESIS SYSTEM (IL12575, US Patent Application US2016/0030753)

This invention entails a hermetically sealed electronics package of a multi-electrode neural prosthesis system, where the sealed enclosure communicates with external components via feedthroughs. The feedthrough…

Image

SENSOR ARRAY AND APPARATUS FOR SIMULTANEOUS OBSERVATION OF TISSUE ELECTROPHYSIOLOGY, CONTRACTILITY, AND GROWTH (IL13165, Pending US patent application)

Cardiac toxicity is one of the major causes of drug candidate failure in clinical studies and is responsible for the failure in regulatory approval of drugs as well as the retraction of numerous drugs from the market. Critical to the…

Image

LLNL has developed specific technical approaches and methods to obtain proteomic information from various human tissue types (hair, skin, teeth, bone). These processes have been developed to maximize proteomic information recovery using liquid chromatography/mass spectrometry methods. LLNL has also developed software tools and processes to mine genetic databases and human genetic sequence data…

Image

LLNL Polyelectrolyte Enabled Liftoff (PEEL), is used to fabricate freestanding polymer films as thin as 10 nm that are capable of bearing loads ranging from milligrams to grams and deformations of up to forty percent (40%). PEEL employs robust, water-based, and self-optimizing surface chemistry to fabricate ultrathin films greater than 100 cm2 in area. The process is easily scalable in size…

Image

LLNL’s Forensic Science Center (FSC) is currently the only facility in the United States that is accredited to accept samples and analyze them for the possible presence of chemical weapons under the Chemical Weapons Convention. FSC scientists are global experts in chemical, nuclear, and biological counterterrorism and their work leads to innovative tools and therapies with biosecurity and…

Image

LLNL researchers have developed an acoustofluidic device design consisting of a silicon and glass chip bonded to a piezoelectric plate. The acoustic microfluidic chip design is optimized using numerical modelling for maximal pressure standing wave amplitude, and its unique configuration with subdivided channels enables high-throughput operation and customized placement of the acoustic pressure…

Image

LLNL has developed a brain-on-a-chip system with a removable cell-seeding funnel to simultaneously localize neurons from various brain regions in an anatomically relevant manner and over specific electrode regions of a MEA. LLNL’s novel, removable cell seeding funnel uses a combination of 3D printing and microfabrication that allows neurons from select brain regions to easily be seeded into…

Image

LLNL is interested in developing a universal platform for the delivery and presentation of any protein antigen, including toxin, viral and bacterial proteins, with apparent concomitant adjuvant activity to enhance the host immune response.

Image

LLNL's multi-well plate cover penetration system is an array cutting and tape folding tool, based on 96-well, 384-well, and 1536-well geometries, that can be robotically operated and will cut, open, and fold inward the sealing tape so that samples can be subsequently aspirated without the need for human intervention to remove the seal which is an aerosol generating and contaminating process…

Image

This technology uses either of two X-ray wave-front sensor techniques, Hartmann sensing and two-dimensional shear interferometry, both of which are capable of measuring the entire two-dimensional electric field, both the amplitude and the phase, with a single measurement. Capturing both the absorption and phase coefficients of the index of refraction can help to reconstruct the image.…

Image

LLNL’s BioBriefcase is a compact and portable instrument capable of autonomously detecting the full spectrum of bioagents, including bacteria, viruses and toxins in the air. It uses the state of art technologies to collect, process, and analyze samples to detect, and identify genetic and protein signatures of bioagents.

Image

Lawrence Livermore National Laboratory scientists have developed a signal enhancing microchip apparatus and method that enhances a microfluidic detector's limits by magnetically focusing the target analytes in a zone of optical convergence. In summary, samples are associated with magnetic nanoparticles or magnetic polystyrene coated beads and moved down the flow channels until they are trapped…

Image

LLNL researchers have combined a novel approach or using bioinformatics with cell-free expression to identify and characterize a class of proteins that kill Gram-positive bacteria with extremely high specificity. The class of proteins is collectively known as muramidases and possess bacterial lytic activity. Muramidases generally represent a potential class of novel antimicrobials for use…

IPO logo over a face profile with interconnected lines

The VITA-D personal biodosimeter technology is designed to measure the vitamin D synthetic capacity of sunlight and/or artificial ultraviolet radiation in-situ, using the same photochemical process from which vitamin D3 is synthesized in human skin.

The innovators envision two embodiments of this technology:

  • Polymer films are doped with molecules of pro-vitamin D and are…
Image
This technology uses microelectromechanical systems (MEMS), adaptive optics (AO), and optical coherence tomography (OCT) to produce 3-D retina images at the cellular level. AO compensates for optical aberrations by continuously sampling images, and rapidly compensating for these aberrations via a wavefront corrector. MEMS reduce the size and cost of the system without sacrificing speed or…
Image

A select number of intracellular pathogens persist naturally in some amoebas and their cysts. LLNL has invented a technology that exploits this process to use amoeba cysts as natural containers for portable transport and long term storage. In addition, this novel encystment system incorporates sample purification and enrichment for clinical samples, taken in the hospital, lab, or any natural…

Image

The patented intracranial hematoma detection technology uses Micropower Impulse Radar (MIR). MIR uses short, high frequency electromagnetic pulses to obtain information in a non-invasive manner. Unlike ultrasound and other electromagnetic techniques, MIR can operate well through the skull, which is of great importance for intracerebral as well as epidural and subdural hematomas. The MIR…

Image

Using various excitation wavelengths, a hyperspectral microscope takes advantage of autofluorescence and polarized light scattering from cellular components to obtain composite images that highlight their presence. The light collection efficiency is maximized to achieve image acquisition times and rates suitable for in vivo applications.

Image

Lawrence Livermore National Laboratory’s scientists have developed the Lawrence Livermore Microbial Detection Array (LLMDA), a technology enabling detection of bacteria, viruses and other organisms. This technology has shown value for applications in detection for product safety, diagnostics and bioterrorism events.

LLMDA contains probes fitted onto a one-inch by three-inch glass…

Image

The biotech industry aims to move towards an on-chip system for sample generation, amplification and detection of both DNA and RNA based organisms. LLNL has invented a new way of isolating samples in a system.

This invention enables creation of partitioned fluid "packets" between polymeric sheets for chemical separation, DNA amplification or PCR-based DNA detection. The polymeric…

Image

LLNL has developed a technology that provides near-instantaneous heating of aqueous samples in microfluidic devices. The method heats samples in a focused area within a microfluidic channel on miniaturized chips. The microwave heating device is composed of a waveguide or microstrip transmission line embedded in a microfluidic channel. Aqueous solution microwave heating allows extremely fast…