Image

Solid-state distributed node-based rapid thermal cycler for extremely fast nucleic acid amplification (LLNL Internal Case # IL-12275, US Patent

Image

Laser heating of aqueous samples on a micro-optical-electro-mechanical system (LLNL Internal Case # IL-11719, US Patents

Image

This technology describes a method for partitioning fluid into “packets” between polymeric sheets. The fluid to be partitioned is introduced between two polymeric layers or within a polymeric channel and the layers are sealed together to form an array or sequence of individual milliliter to picoliter samples as shown in figure below. This approach allows a…

Image

The present invention uses magnetic fields to hold particles in place for faster DNA amplification and sequencing. This invention provides a method for faster DNA sequencing by amplification of the genetic material within microreactors, denaturing and de-emulsifying and then sequencing the material while retaining it in the PCR/sequencing zone by a magnetic field.…

Image

This invention is designed to sort and identify complex samples using parallel nucleic acid characterization. By isolating single or double stranded nucleic acids derived from complex samples, researchers can sequence previously unknown genetic material to identify novel viruses and organisms. The chip-based microfluidic system achieves this through microdroplet PCR amplification,…

Image

Researchers at LLNL have created a new technology for performing pumping and valving operations in microfabricated fluidic systems. Traditional microfabricated devices have some disadvantages that defeat the advantages of miniaturization. For example, they require high power and voltage, and they need specific fluids to work properly and to be broadly applicable. The technology…

Image

LLNL researchers have developed a high-volume, low-cost diagnostic test that is easy to use and provides results in under an hour. The testing platform will provide emergency responders and other medical professionals with the ability to screen individuals using oral and nasal samples, and obtain results in approximately 30 minutes. This point-of-care testing approach will enable rapid triage…

Image

LLNL scientists have developed a battery-powered device which is low-cost and multi-chambered for the extraction and amplification of nucleic acids from environmental, clinical, and laboratory samples via loop-mediated isothermal amplification (LAMP). This platform identifies pathogenic bacteria and assists in determining the optimal treatment plan. A multi-chamber amplification cartridge in…

Image

LNLL scientists have invented a method for multiplexed detection of PCR amplified products which can be completed in a single step. Highly validated species-specific primer sets are used to simultaneously amplify multiple diagnostic regions unique to each individual pathogen. Resolution of the mix of amplified products is achieved by PCR product hybridization to corresponding probe sequences,…

Image

LLNL scientists have developed a method to synthesize long DNA sequences of varying length starting from short oligos. Synthetic oligos are generated using bioinformatics tools by overlapping multiple small segments, such as 4-mers or 6-mers, derived from both strands of the source DNA strand. DNA polymerases fill the gaps between these short n-mers to create the new, longer DNA strand. This…

Image

LLNL scientists have developed a technology which fulfills this need. The LLNL technology itself is comprised of two elements which are to be embedded in a user's personal electronic device (e.g. cell phone, tablet device, pager, etc.). The first is a proximity monitor which transmits location and temporal data such as the distance between the user and a contagious individual and the duration…

Image

LLNL scientists have created a standalone pathogen identifier that can be placed in public settings, such as in stores or on street corners. Not unlike an ATM in physical size, this kiosk will accept biological samples from an individual for multiplexed analysis. The sample collection process will be sufficiently simple such that anyone could begin the diagnostic process after making the…

Image

The LLNL invention has two assay chambers wherein each chamber is comprised of another two chamber modules. This allows the device to process up to two assays per chamber module, or four total assays per biological sample. These two duplex assays are each fed by parallel interrogation ports while the device still maintains a small physical profile. Each port has its own LED for excitation,…

Image

This LLNL-developed invention is multiplexed and utilizes the Luminex bead-based liquid array, which contains 100 different unique beads. Oligonucleotide probes with sequences complementary to the target sequences are covalently coupled to these unique beads. These capture beads are mixed with viral samples obtained from the patient via cheek swabbing or a throat wash and subjected to PCR in a…

Image

LLNL researchers have invented a system for identifying all known and unknown pathogenic or non-pathogenic organisms in a sample. This invention takes a complex sample and generates droplets from it. The droplets consist of sub-nanoliter volume reactors which contain the organism sized particles. A lysis device lyses the organisms and releases the nucleic acids. An amplifier then magnifies the…

Image

LLNL researchers have discovered unique DNA signatures that can be used to identify, with high specificity, three such organisms with bio-weapon potential, including Yersinia pestis and Francisella tularensis (both Category A agents), and Brucella species (Category B agent). The DNA sequence information of a desired region of an organism unique to that organism is recorded, a DNA primer is…

Image

LLNL scientists have developed a high-confidence, real-time multiplexed reverse transcriptase PCR (RT-PCR) rule-out assay for foot and mouth disease virus (FMDV). It utilizes RT-PCR to amplify both DNA and RNA viruses in a single assay to detect FMDV as well as rule out other viruses that cause symptoms in livestock indistinguishable from those caused by FMDV, such as Bovine Herpes Virus-1 (…

Image

LLNL researchers have developed a method to quickly and accurately identify the family of a virus infecting a vertebrate via PCR. Universal primer sets consisting of short nucleic acid strands of 7 to 30 base pairs in length were created to amplify target sequences of viral DNA or RNA. These primers can amplify certain identifying sequences of all viral genomes sequenced to date as well as…

Image

LLNL scientists have invented a method that is able to identify SE specific sequences that can be utilized as diagnostics markers. The method, called suppression subtractive hybridization (SSH), is a PCR-based technique that identifies restriction fragments that are present in the target strain but not other strains. A set of restriction enzymes specific to the target species isolates their…

Image

LLNL scientists have developed a rapid parallel genetic profiling technology that can be used to detect an array of pathogens from a small, complex sample. Detectable pathogens by the LLNL technology include viruses, bacteria, protozoa, and other microbes. The device works by first splitting a given sample into millions of emulsified, encapsulated microdroplets each of which are then split…