Skip to main content
energetic compounds with isotopic labels

Livermore Lab researchers have developed a tunable shaped charge which comprises a cylindrical liner commonly a metal such as copper or molybdenum but almost any solid material can be used and a surround layer of explosive in which the detonation front is constrained to propagate at an angle with respect to the charge axis.  The key to the concept is the ability to deposit a surrounding…

3d printed structural_energetics

Livermore Lab researchers have developed a method that combines additive manufacturing (AM) with an infill step to render a final component which is energetic. In this case, AM is first used to print a part of the system, and this material can either be inert or energetic on its own. A second material is subsequently added to the structure via a second technique such as casting, melt…


3D printing involves the layer-by-layer deposition of one, or more, materials. The spatial placement of the material, if carefully controlled, can influence a desired static or dynamic property. The use of 3D printing to build complex and unique energetic components is at the center of LLNL’s architected energetic materials and structures effort. LLNL has developed several different methods…