A thyristor will stay conducting until the current through the device is zero (“current zero”) or perhaps slightly negative. LLNL’s approach is to use the opticondistor (“OTV”) to force this current zero in order to force the device into an “off” state. By combining a light-activated thyristor with an OTV, a noise-immune, high efficiency, high-power switching device can be…
Keywords
- Show all (49)
- Imaging Systems (9)
- Photoconductive Semiconductor Switches (PCSS) (9)
- Semiconductors (6)
- Optical Switches (4)
- Power Electronics (3)
- Sensors (3)
- Computing (2)
- Particle Accelerators (2)
- Spectrometers (2)
- 3D Electronics (1)
- Additive Manufacturing (1)
- Analysis (1)
- MEMS Sensors (1)
- Optical Sensors (1)
- Quantum Science (1)
- Simulation (1)
- (-) Electric Grid (2)
Image
The approach is to leverage the fact that a momentary “load” equal to the power transmission line impedance, (Z0), during the transient can suppress its propagation. Z(0) is typically a fixed impedance of several hundred ohms based on the geometry of most single wire transmission lines.
So, an isolated self-powered opticondistor (OTV) system may provide an ultrafast method of…