Skip to main content
Image
OALV design with High-k Photoconductor and High-k Optical Window

LLNL researchers has developed designs to augment WBG/UWBG-based OALVs to improve their power handling capability under CW operational environments.  These designs include:

Image
Segments of transmission line lengths can be switched to open circuit (as shown) or shorted to the ground (not shown)

Design and construction of a photoconductive switch requires a diamond photoconductor illuminated by light of a certain excitation wavelength.  The diamond material is specifically doped with substitutional nitrogen, which act as a source of electrons.  The device architecture allows maximum light entering the aperture.  The top and bottom electrodes are made of ultra wide band gap (UWBG)…

Image
Annular illumination on photo conductor by Conical Total Internal Reflection “CTIR” endcap

The approach is to use a custom-designed frustrum and attach it to the optical fiber that connects to the PCSS.  Light from the fiber enters the frustrum, spreads out, and enters the PCSS.  Any unabsorbed light re-enters the frustrum and, because of its geometry, reflects back into the PCSS itself with only a negligible fraction escaping from the fiber.  The shape of the novel frustrum is…

Image
mesoscale_nand_gate

Recent advancements in additive manufacturing, also called 3D printing, allow precise placement of materials in three dimensions. LLNL researchers have invented mechanical logic gates based on flexures that can be integrated into the microstructure of a micro-architected material through 3D printing. The logic gates can be combined into circuits allowing complex logic operations to be…

Image
AgAg2S reference electrode

LLNL has developed a reference electrode that is a great improvement on the widely used silver or platinum wire QRE commonly used in electrochemistry in ionic liquids. This new reference electrode, based on a silver-sulfide coated silver wire, exhibits greatly improved stability over a QRE. The stability of our RE approaches that of the Ag/Ag+ RE, but unlike the Ag/Ag+ RE, the RE reported here…

Image
Optics

The LLNL method for optimizing as built optical designs uses insights from perturbed optical system theory and reformulates perturbation of optical performance in terms of double Zernikes, which can be calculated analytically rather than by tracing thousands of rays. A new theory of compensation is enabled by the use of double Zernikes which allows the performance degradation of a perturbed…

Image
OTV Image

The Optical Transconductance Varistor (OTV, formerly Opticondistor) overcomes depletion region voltage limitations by optically exciting wide bandgap materials in a compact package. A 100μm thick crystal could have the capability approaching 40kV and would replace numerous equivalent junction devices. Thus, unlike present junction transistors or diodes, this wide bandgap device can be stacked…