The LLNL method for optimizing as built optical designs uses insights from perturbed optical system theory and reformulates perturbation of optical performance in terms of double Zernikes, which can be calculated analytically rather than by tracing thousands of rays. A new theory of compensation is enabled by the use of double Zernikes which allows the performance degradation of a perturbed…
Keywords
- Show all (70)
- Electric Grid (7)
- Substrate Engraved Meta-Surface (SEMS) (7)
- Carbon Utilization (6)
- Additive Manufacturing (5)
- Compact Space Telescopes (5)
- Diode Lasers (4)
- Laser Materials Processing (4)
- Materials for Energy Products (4)
- Precision Optical Finishing (4)
- Direct Air Capture (3)
- Optical Damage Mitigation (3)
- RF Photonics (3)
- 3D Printing (2)
- Additively Manufactured (AM) Optics (2)
- Fiber Lasers (2)
- Inertial Fusion Energy (IFE) (2)
- Power Electronics (2)
- Synthesis and Processing (2)
- Ultrashort Pulse Lasers (2)
- (-) Precision Engineering (1)