Skip to main content
Radiation Training Field Simulator (RaFTS).

There are three main components to the RaFTS system: 1) the radiation detector, which can be of any type and from any manufacturer; 2) the RaFTS electronics, which produce the electronic pulses that are injected into the electronics of the radiation detector through a (to be) standardized port interface; and 3) the exercise scenario, which defines the synthetic radiation field and time-varying…


LLNL has developed a radiation detector that cools to operating temperatures in 1-2 hours using two separate cooling stages. The first cooling brings the instrument to operating temperature. The embedded second cooling system achieves portable detection that can be sustained for 8-12 hours.

In addition, an integrated, hermetically-sealed package has been developed complete with…

Truck approaching radiation portal monitor

LLNL scientists have developed an approach for full spectrum analysis during gamma ray spectrometry using a spectral library signature created from a large amount of spectral data. The signature can be compared to unknown spectral measurements for the identification of previously unknown nuclear material.

MC-15 portable neutron multiplicity detector

LLNL scientists have developed a simple neutron detection technique that can discriminate fissile material from non-fissile material. A low cost digital data acquisition unit collects data at high rates and processes large volumes of data in real-time. This technique functions in a passive mode much like a standard portal monitor. There are options for converting the technique to an active…

STJ x-ray spectrometer (shown on the table) to characterize a material sample.

LLNL's X-ray spectrometers based on STJ have been developed for high-resolution soft X-ray spectroscopy. STJ consist of two superconducting thin film electrodes separated by a thin insulating tunnel barrier. They measure X-ray energies from the increase in tunneling current after X-ray absorption in one of the electrodes excites additional charge carriers above the superconducting energy gap.…

Radio Active Materials processed

The invention utilizes the statistical nature of radiation transport as well as modern processing techniques to implement a physics-based, sequential statistical processor. By this we mean that instead of accumulating a pulse-height spectrum as is done in many other systems, each photon is processed individually upon arrival and then discarded. As each photon arrives, a decision is…

Spectroscopic Injection Pulser prototype

The technology that is available has the capability to inject realistic radiation detection spectra into the amplifier of a radiation detector and produce the all the observables that are available with that radiation detection instrument; count-rate, spectrum, dose rate, etc.

The system uses the capability of LLNL to generate the source output for virtually any source and determine…