LLNL researchers have developed additive manufactured fuel targets for IFE. They have been successful in using TPL to fabricate low density (down to 60 mg/cm3) and low atomic number (CHO) polymeric foams for potential targets, and some have been tested at the OMEGA Laser Facility. With TPL, LLNL researchers have also been able to fabricate a full fuel capsule with diameter of ~ 5mm or…
Keywords
- Show all (77)
- Additive Manufacturing (51)
- 3D Printing (7)
- Synthesis and Processing (3)
- Manufacturing Automation (2)
- Manufacturing Improvements (2)
- Microfabrication (2)
- Volumetric Additive Manufacturing (2)
- Electric Grid (1)
- Inertial Fusion Energy (IFE) (1)
- Manufacturing Simulation (1)
- Material Design (1)
- Optical Switches (1)
- Precision Engineering (1)
- (-) Additively Manufactured (AM) Optics (1)
- (-) Inertial Confinement Fusion (ICF) (1)
Image

LLNL researchers have continued to develop their pioneering DIW 3D-printed glass optics technology that allows for the 3D printing of single- and multi-material optical glass compositions in complex shapes. This LLNL invention further proposes incorporating dopants (including, but not limited to TiO2 and Pd) into slurries and inks for 3D printing of glass components that can then be directly…