A thyristor will stay conducting until the current through the device is zero (“current zero”) or perhaps slightly negative. LLNL’s approach is to use the opticondistor (“OTV”) to force this current zero in order to force the device into an “off” state. By combining a light-activated thyristor with an OTV, a noise-immune, high efficiency, high-power switching device can be…
Keywords
- Show all (114)
- Additive Manufacturing (51)
- Imaging Systems (9)
- Photoconductive Semiconductor Switches (PCSS) (9)
- 3D Printing (7)
- Semiconductors (6)
- Optical Switches (5)
- Power Electronics (3)
- Synthesis and Processing (3)
- Computing (2)
- Manufacturing Automation (2)
- Manufacturing Improvements (2)
- Microfabrication (2)
- Particle Accelerators (2)
- Sensors (2)
- Spectrometers (2)
- Volumetric Additive Manufacturing (2)
- Manufacturing Simulation (1)
- Precision Engineering (1)
- (-) Electric Grid (3)

The approach is to leverage the fact that a momentary “load” equal to the power transmission line impedance, (Z0), during the transient can suppress its propagation. Z(0) is typically a fixed impedance of several hundred ohms based on the geometry of most single wire transmission lines.
So, an isolated self-powered opticondistor (OTV) system may provide an ultrafast method of…

Improving the active material of the Zn anode is critical to improving the practicality of Zn-MnO2 battery technology. LLNL researchers have developed a new category of 3D structured Zn anode using a direct-ink writing (DIW) printing process to create innovative hierarchical architectures. The DIW ink, which is a gel-based mixture composed of zinc metal powder and organic binders, is…