Skip to main content
Image
LLNL researchers prepare an experiment in a spherical chamber at the High Explosives Applications Facility (HEAF)

LLNL has developed a method that adds a polyamine based crosslinker and an acid receptor, based on MgO nanoparticles into a polymer bonded PBX, where the polymer binder is a fluoropolymer containing vinylidene difluoride functionality.  Crosslinking kinetics can then be controlled by selecting an appropriate amine structure, pressing temperature and optionally the addition of a chemical…

Image
High Explosives Science, abstract smoke stock photo

LLNL researchers uses Additive Manufacturing (AM) to create reinforcing scaffolds that can be integrated with High Explosives (HE) or solid rocket fuel with minimal volume fraction. Its main benefit is to create stability in harsh field conditions.  Its secondary benefit is providing another method to finely tune blast performance or fuel burn. Creating complex shapes with structural…

Image
HAPLS

LLNL researchers have developed a high average power Faraday rotator that is gas-cooled and uniquely designed to dissipate heat uniformly so that it does not build up in the optical component and affect its performance.  The Faraday rotator material is sliced into smaller disks like a loaf of bread so that high speed helium gas can flow between the slices.  With this highly efficient…

Image
The High-Repetition-Rate Advanced Petawatt Laser System (HAPLS), the world’s most advanced and highest average power diode-pumped petawatt laser system, at LLNL.

This invention discloses a method to minimize transient variations in the wavelength- and/or pointing-behavior of an optic, without requiring a reduction in its thermal resistance, optical absorption, or operating irradiance. The invention employs a combination of a time-varying heat source and time-varying thermal resistance and/or heat sink temperature to achieve temperature stability of the…

Image
NIF Target Chamber

This invention concerns a new type of optic: a transient gas or plasma volume grating produced indirectly by small secondary lasers or directly by nonlinear processes using the primary beams themselves. When used in conjunction with advantageously placed shielding it offers a means of protecting the final optical components of a high-repetition-rate IFE facility. These transmission optics are…