Skip to main content
Image
LLNL has developed a new method for increasing lifetime in quantum coherent devices.

LLNL has developed a method of extending device lifetimes by imprinting into the device a shape that excludes specific vibrational modes, otherwise known as a phononic bandgap. Eliminating these modes prevents one of the primary energy loss pathways in these devices. LLNL’s new method enhances the coherence of superconducting circuits by introducing a phononic bandgap around the system’s…

Image
permanent_magnets

LLNL uses the additive manufacturing technique known as Electrophoretic Deposition to shape the source particle material into a finished magnet geometry. The source particle material is dispersed in a liquid so that the particles can move freely. Electric fields in the shape of the finished product then draw the particles to the desired location to form a “green body”, much like an unfired…

Image
ccms-water-splitting

Dubbed the "LLNL Chemical Prism", the LLNL system has use wherever there is a need to separate components of a fluid. A few examples include:

  • Chemical detection for known and previously unknown chemicals or substances
  • Separation of biomolecules from a cellular extract
  • Fractionation of a complex mixture of hydrocarbons
  • Forensic analysis of…