Skip to main content
Image
Powder in Chemical Watch Glass

LLNL researchers have developed a Li-Sn-Zn ternary alloy and its method of production.  Instead of traditional alloying techniques, the alloy was synthesized using mechanical alloying (high energy ball milling).  With high purity elemental powders of lithium, tin and zinc, LLNL researchers were able to prepare Li60Sn20Zn20 as well as Li70Sn20Zn10 nanopowders.

Image
Livermore researchers support efforts to limit the need for rare-earth elements in U.S. clean-energy technologies.

CMI—a DOE Energy Innovation Hub—is a public/private partnership led by the Ames Laboratory that brings together the best and brightest research minds from universities, national laboratories (including LLNL), and the private sector to find innovative technology solutions to make better use of materials critical to the success of clean energy technologies as well as develop resilient and secure…

Image
drift_meter_thumb

LLNL’s Optically-based Interstory Drift Meter System provides a means to accurately measure the dynamic interstory drift of a vibrating building (or other structure) during earthquake shaking. This technology addresses many of the shortcomings associated with traditional strong motion accelerometer based building monitoring.

LLNL’s discrete diode position sensitive device is a newly…

Image
Electronic Wave

The invention relates to a measurement method and system for capturing both the amplitude and phase temporal profile of a transient waveform or a selected number of consecutive waveforms having bandwidths of up to about 10 THz in a single shot or in a high repetition rate mode. The invention consists of an optical preprocessor which can then output a time-scaled replica of the input signal to…