Skip to main content
Image
Powder in Chemical Watch Glass

LLNL researchers have developed a Li-Sn-Zn ternary alloy and its method of production.  Instead of traditional alloying techniques, the alloy was synthesized using mechanical alloying (high energy ball milling).  With high purity elemental powders of lithium, tin and zinc, LLNL researchers were able to prepare Li60Sn20Zn20 as well as Li70Sn20Zn10 nanopowders.

Image
Livermore researchers support efforts to limit the need for rare-earth elements in U.S. clean-energy technologies.

CMI—a DOE Energy Innovation Hub—is a public/private partnership led by the Ames Laboratory that brings together the best and brightest research minds from universities, national laboratories (including LLNL), and the private sector to find innovative technology solutions to make better use of materials critical to the success of clean energy technologies as well as develop resilient and secure…

Image
A typical first responder training visualization that employs simulated gamma-ray and neutron radiation interactions within a virtual scenario. (Images by Ryan Chen.)

To address the need for realistic and high-fidelity first responder training, a multidisciplinary team at LLNL has worked to establish the new gold standard simulator called TARANTULA (Tactical Augmented Reality Applications for Nuclear Emergency Support Team (NEST) Training using Livermore Analytics). TARANTULA is a scientifically accurate, fully functional, field-deployable simulator that…

Image
Radiation Training Field Simulator (RaFTS).

There are three main components to the RaFTS system: 1) the radiation detector, which can be of any type and from any manufacturer; 2) the RaFTS electronics, which produce the electronic pulses that are injected into the electronics of the radiation detector through a (to be) standardized port interface; and 3) the exercise scenario, which defines the synthetic radiation field and time-varying…