Skip to main content
Image
Stock image UAV drone monitoring gas near pipeline valves

LLNL researchers have developed a TDLAS-based, standalone, real-time gas analyzer in a small form-factor for continuous or single-point monitoring.  The system can analyze multiple gases with ultra-high sensitivity (ppm detection levels) in harsh conditions when utilizing wavelength-modulation spectroscopy (WMS). 

Image
Schematic of 2P3C setup.  Pump laser component is in red while probe laser component is denoted in blue.

LLNL’s novel approach combines 2-color spectroscopy with CRDS, a combination not previously utilized.

Image
Cross Section of the High-Voltage Insulator Joint

The approach is to build a high voltage insulator consisting of two materials:  Poly-Ether-Ether-Ketone (“PEEK”) and Machinable Ceramic (“MACOR”).  PEEK has a high stress tolerance but cannot withstand high temperatures, while MACOR has high heat tolerance but is difficult to machine and can be brittle.  MACOR is used for the plasma-facing surface, while PEEK will handle the stresses and high…

Image
An artist’s concept rendering of a 3.5-meter linear induction accelerator (LIA) with four lines-of-sight toward a patient. The blue elements magnetically focus and direct the LIA’s electron beams.

LLNL’s approach is to use their patented Photoconductive Charge Trapping Apparatus (U.S. Patent No. 11,366,401) as the active switch needed to discharge voltage across a vacuum gap in a particle accelerator, like the one described in their other patent (U.S. Patent No.