Skip to main content
Image
OALV design with High-k Photoconductor and High-k Optical Window

LLNL researchers has developed designs to augment WBG/UWBG-based OALVs to improve their power handling capability under CW operational environments.  These designs include:

Image
Segments of transmission line lengths can be switched to open circuit (as shown) or shorted to the ground (not shown)

Design and construction of a photoconductive switch requires a diamond photoconductor illuminated by light of a certain excitation wavelength.  The diamond material is specifically doped with substitutional nitrogen, which act as a source of electrons.  The device architecture allows maximum light entering the aperture.  The top and bottom electrodes are made of ultra wide band gap (UWBG)…

Image
Annular illumination on photo conductor by Conical Total Internal Reflection “CTIR” endcap

The approach is to use a custom-designed frustrum and attach it to the optical fiber that connects to the PCSS.  Light from the fiber enters the frustrum, spreads out, and enters the PCSS.  Any unabsorbed light re-enters the frustrum and, because of its geometry, reflects back into the PCSS itself with only a negligible fraction escaping from the fiber.  The shape of the novel frustrum is…

Image
3D MEA device prior to actuation. A) A completed device. B) Close-up image of a single cell culture well. The large dark metal features at the top and bottom of each cell culture well are ground electrodes, which are all electrically shorted to each other. C) Light micrograph of a single 3DMEA post-actuation. The hinge regions are plastically deformed and allow the probes to stand upright without additional supports.

To replicate the physiology and functionality of tissues and organs, LLNL has developed an in vitro device that contains 3D MEAs made from flexible polymeric probes with multiple electrodes along the body of each probe. At the end of each probe body is a specially designed hinge that allows the probe to transition from lying flat to a more upright position when actuated and then…

Image
OTV Image

The Optical Transconductance Varistor (OTV, formerly Opticondistor) overcomes depletion region voltage limitations by optically exciting wide bandgap materials in a compact package. A 100μm thick crystal could have the capability approaching 40kV and would replace numerous equivalent junction devices. Thus, unlike present junction transistors or diodes, this wide bandgap device can be stacked…