Skip to main content

Lawrence Livermore National Laboratory is a leading new chemicals and materials creation with a broad array of applications including batteries, catalysts for clean technology, ceramics, composites, additives and more. The Lab’s unique Advanced Manufacturing capabilities go hand in hand with the creation of novel methods to create new concepts altogether.

Portfolio News and Multimedia

Image
Four LLNL teams to attend Energy I-Corps Cohort 20

In a record setting year for Lawrence Livermore National Laboratory (LLNL), four teams of LLNL researchers will attend the Department of Energy’s (DOE) Energy I-Corps (EIC) Cohort 20 this spring.

The EIC is a key initiative of the DOE’s Office of Technology Transitions, and facilitated at LLNL by Hannah Farquar from the Innovation and Partnerships Office (IPO). Established in 2015, EIC pairs teams of scientists with industry mentors to train researchers in moving DOE lab-developed technologies toward commercialization.

Image
LLNL and Partners Leveraging Microorganisms to Separate and Purify Rare-Earth Elements

LLNL, Penn State, Columbia University, Tufts University, University of Kentucky, Purdue University and industry partner Western Rare Earths will use microbial and biomolecular engineering to develop a scalable bio-based separation and purification strategy for rare-earth elements

Image
Three LLNL Scientists Inducted into LLNL’s Entrepreneurs’ Hall of Fame

A trio of LLNL scientists have been inducted into the laboratory's Entrepreneur's Hall of Fame. Each developed technologies during or after their Lab careers that created major economic impacts or spawned new companies.

Chemicals and Materials Technologies

Keywords

Image
A hypothetical structure-optimized adsorbent packing with hierarchical pores and submicron features will facilitate mass transfer to adsorption sites. SEM image of porous fluoropolymer

LLNL researchers have developed a self-supporting structural material that promises more efficient carbon capture specifically from air, but generally from all CO2 containing gas sources. The material is produced with a liquid high-amine-content precursor polymer that is functionalized by adding on polymerizable end groups.