Skip to main content

The Lawrence Livermore National Laboratory is home to the world’s largest laser system, the National Ignition Facility (NIF). The NIF with its 192 beam lines and over 40,000 optics has been an engine of innovation for lasers and optics technologies for the last couple of decades. The Lasers and Optics intellectual property portfolio is the culmination of the many groundbreaking developments in high energy, high peak power and ultrashort pulse laser system design and operation, including technologies related to Laser Diodes, Fiber & Disk Lasers, Compact Telescopes, High Damage Threshold Gratings, High Power Optical Components and their Fabrication and Coating Techniques. The thrust of the research and development at the NIF has been to realize novel approaches for laser systems, optical components and their applications that are more compact and higher efficiency while reliably delivering ever higher energy and peak power capabilities required in the furtherance of LLNL’s missions in Stockpile Stewardship and High Energy Density Science.

Portfolio News and Multimedia

Image
GEOStare SV2 represents a groundbreaking collaboration between Terran Orbital and LLNL

The space vehicle integrates LLNL’s Monolithic Telescope (MonoTele) technology with Terran Orbital’s proven expertise producing high-reliability space vehicles. Developed through a four-year, $6 million cooperative research and development agreement (CRADA), this mission demonstrates the power of collaboration in advancing compact satellites for commercial applications.

Image
Lab to provide optical payload for upcoming U.S. Space Force mission

Lawrence Livermore National Laboratory’s (LLNL) Space Program is now building an optical space domain awareness payload for an upcoming mission by the U.S. Space Force.

The planned mission, known as VICTUS HAZE, will be a tactically responsive space mission to demonstrate the ability to rapidly characterize an on-orbit threat.

The payload for VICTUS HAZE will use the LLNL monolithic telescope technology. LLNL’s monolithic telescopes are built out of a single piece of fused silica, eliminating the need for alignment and calibration after manufacture, while still providing the best possible resolution.

LLNL’s monolithic telescope was developed and patented by Lab employees Willem de Vries and Brian Bauman and former Lab employee Alex Pertica.

Image
Livermore researchers collect three awards among the top 100 industrial inventions

R&D World Magazine recently announced their 2022 award winners. LLNL researchers received three awards, which include Tailored Glass by Direct Ink Writing, novel compression gratings that enable a new class of high-energy laser systems and a 3D printing feedstock known as Energy Inks that can print a functioning battery.

Lasers and Optics Technologies

Image
Photograph of glass sample unplated on one side (left) and plated with nickel phosphorous on the other (right)

LLNL researchers have continued to develop their pioneering DIW 3D-printed glass optics technology that allows for the 3D printing of single- and multi-material optical glass compositions in complex shapes. This LLNL invention further proposes incorporating dopants (including, but not limited to TiO2 and Pd) into slurries and inks for 3D printing of glass components that can then be directly…

Image
Flash Stock Image

This invention proposes achieving the same effect of a single, high intensity pulse through the use of a closely spaced burst of short duration pulses. By keeping the intensity of the individual pulses below the damage threshold the risk of catastrophic damage is greatly mitigated. Additionally, the pulses are directed to strike the target at locations temporally and spatially sufficiently…

Image
Left to right: Drew Willard, Brendan Reagan, and Issa Tamer work on the Tm:YLF laser system. Photos by Jason Laurea

This invention proposes the use of a nonlinear spectral broadening subsystem as a post-CPA pulse compression add-on for high energy laser systems. The proposed solution utilizes the beam profile of a high peak power laser as a reference to shape a highly transmissive nonlinear plastic (e.g., CR39) itself to ensure a spatially homogeneous nonlinear spectral broadening.

Image
Adobe Stock image laser beam

This invention proposes to engineer the current density along the length of a laser diode to overcome the penalty associated with non-uniformity resulting from asymmetry in the gain, photon or carrier density despite having uniform contact. Optimizing the current density profile enables diode lasers to operate with greater power conversion efficiency or operate with equivalent power conversion…

Image
Schematic showing mismatched coefficient of thermal expansion (CTE) coating

This invention proposes to engineer the temperature dependence of the emission wavelength of LEDs and laser diodes. The approach is to use a strain-inducing coating to counteract the intrinsic temperature coefficient of the emission wavelength of the LED or laser diode device thereby rendering it athermal. This invention avoids additional complexity, size, weight and power dissipation of…

Image
Photoconductive Semiconductor Laser Diodes and LEDs

This invention proposes a method to overcome the key limitation of electrically pumped lasers based on AlN, AlGaN, or AlInGaN, namely the lack of suitable shallow donor and acceptor dopants. As the band gap of these materials increases (and the emission wavelength decreases), both electrons and holes require greater thermal energies in order to ionize.

Image
Adobe Stock image laser beam

Laser diode lensing effect can be substantially reduced by creating a pattern interface such that the substrate is only attached at the diode mesa. This is achieved by either creating a pattern solder joint and/or pattern substrate.

Image
HAPLS

LLNL researchers have developed a high average power Faraday rotator that is gas-cooled and uniquely designed to dissipate heat uniformly so that it does not build up in the optical component and affect its performance.  The Faraday rotator material is sliced into smaller disks like a loaf of bread so that high speed helium gas can flow between the slices.  With this highly efficient…

Image
The High-Repetition-Rate Advanced Petawatt Laser System (HAPLS), the world’s most advanced and highest average power diode-pumped petawatt laser system, at LLNL.

This invention discloses a method to minimize transient variations in the wavelength- and/or pointing-behavior of an optic, without requiring a reduction in its thermal resistance, optical absorption, or operating irradiance. The invention employs a combination of a time-varying heat source and time-varying thermal resistance and/or heat sink temperature to achieve temperature stability of the…

Image
NIF Target Chamber

This invention concerns a new type of optic: a transient gas or plasma volume grating produced indirectly by small secondary lasers or directly by nonlinear processes using the primary beams themselves. When used in conjunction with advantageously placed shielding it offers a means of protecting the final optical components of a high-repetition-rate IFE facility. These transmission optics are…

Image
gradient_composition_glass

LLNL researchers have developed a custom resin formulation which uses a dispersing solvent and only a multifunctional monomer as the binding agent. The dispersing solvent system typically used has multiple components meant to achieve excellent dispersal of silica in order to create a flowable resin (rather than a paste). The dispersing agent has low vapor pressure, which allows the 3D printed…