LLNL’s novel approach is to use diamond substrates with the desired donor (nitrogen) and acceptor (boron) impurities. In order to optically activate these deep impurities, the invention requires at least one externally or internally integrated light source. The initial exposure to light can set up the desired conduction current, after which the light source could be turned…
Keywords
- Show all (37)
- Electric Grid (7)
- Carbon Utilization (6)
- Materials for Energy Products (4)
- Additive Manufacturing (3)
- Direct Air Capture (3)
- 3D Printing (2)
- Inertial Fusion Energy (IFE) (2)
- Power Electronics (2)
- Synthesis and Processing (2)
- Inertial Confinement Fusion (ICF) (1)
- Membranes (1)
- Photoconductive Semiconductor Switches (PCSS) (1)
- Simulation (1)
- (-) Geologic Storage (1)
- (-) Semiconductors (1)
Technology Portfolios
Image

LLNL has a patented process to produce colloidal silica directly from geothermal fluids. Livermore’s process uses membranes to produce a mono-dispense slurry of colloidal silica particles for which there are several applications. LLNL has demonstrated that colloidal silica solutions that result from extraction of silica from geothermal fluids undergo a transition to a solid gel over a range of…