Skip to main content

Keywords

Show more

Technology Portfolios

Image
Schematic of six-ring design for IL-13352

This LLNL invention proposes a new microstructured large mode area fiber design that enhances the confinement of the core mode while strongly suppressing thermal or scattering mediated dynamic couplings with higher order modes thought to be responsible for generating undesirable Transverse Mode Instabilities. The design accomplishes higher order mode suppression and core mode confinement by…

Image
Small-angle X-ray scattering (SAXS) data of crosslinked polyelectrolyte membrane films formed under different equilibrium humidity conditions

LLNL researchers have developed a method to enhance the performance of polyelectrolyte membranes by using a humidity-controlled crosslinking process which can be applied to precisely adjust the water channels of the membrane.

Image
grating_optic2

Livermore Lab's SBC grating optics benefit from the combination of the following key technologies:

  • LLNL proprietary optical coating designs utilizing >100 thin film layers – enables ultra-low-loss, ppm transmission levels through the coating, high diffraction efficiency, and large bandwidth.
  • LLNL proprietary dispersive surface relief structure…
Image
Second skin smart protection mechanism of responsive nanotube membranes against environmental threats

LLNL researchers have developed an alternative route to protective breathable membranes called Second Skin technology, which has transformative potential for protective garments. These membranes are expected to be particularly effective in mitigating physiological burden.

For additional information see article in Advanced Materials “Ultrabreathable and Protective Membranes with Sub-5…