Skip to main content
Image
Small-angle X-ray scattering (SAXS) data of crosslinked polyelectrolyte membrane films formed under different equilibrium humidity conditions

LLNL researchers have developed a method to enhance the performance of polyelectrolyte membranes by using a humidity-controlled crosslinking process which can be applied to precisely adjust the water channels of the membrane.

Image
permanent_magnets

LLNL uses the additive manufacturing technique known as Electrophoretic Deposition to shape the source particle material into a finished magnet geometry. The source particle material is dispersed in a liquid so that the particles can move freely. Electric fields in the shape of the finished product then draw the particles to the desired location to form a “green body”, much like an unfired…

Image
Second skin smart protection mechanism of responsive nanotube membranes against environmental threats

LLNL researchers have developed an alternative route to protective breathable membranes called Second Skin technology, which has transformative potential for protective garments. These membranes are expected to be particularly effective in mitigating physiological burden.

For additional information see article in Advanced Materials “Ultrabreathable and Protective Membranes with Sub-5…