Skip to main content
Image
LLNL researchers prepare an experiment in a spherical chamber at the High Explosives Applications Facility (HEAF)

LLNL has developed a method that adds a polyamine based crosslinker and an acid receptor, based on MgO nanoparticles into a polymer bonded PBX, where the polymer binder is a fluoropolymer containing vinylidene difluoride functionality.  Crosslinking kinetics can then be controlled by selecting an appropriate amine structure, pressing temperature and optionally the addition of a chemical…

Image
High Explosives Science, abstract smoke stock photo

LLNL researchers uses Additive Manufacturing (AM) to create reinforcing scaffolds that can be integrated with High Explosives (HE) or solid rocket fuel with minimal volume fraction. Its main benefit is to create stability in harsh field conditions.  Its secondary benefit is providing another method to finely tune blast performance or fuel burn. Creating complex shapes with structural…

Image
Small-angle X-ray scattering (SAXS) data of crosslinked polyelectrolyte membrane films formed under different equilibrium humidity conditions

LLNL researchers have developed a method to enhance the performance of polyelectrolyte membranes by using a humidity-controlled crosslinking process which can be applied to precisely adjust the water channels of the membrane.

Image
Second skin smart protection mechanism of responsive nanotube membranes against environmental threats

LLNL researchers have developed an alternative route to protective breathable membranes called Second Skin technology, which has transformative potential for protective garments. These membranes are expected to be particularly effective in mitigating physiological burden.

For additional information see article in Advanced Materials “Ultrabreathable and Protective Membranes with Sub-5…