Skip to main content
Image
Novel Protein-based Method for REE Separation

As an important step toward overcoming the technical and environmental limitations of current REE processing methods, the LLNL team has patented and demonstrated a biobased, all-aqueous REE extraction and separation scheme using the REE-selective lanmodulin protein. Lanmodulin can be fixed onto porous support materials using thiol-maleimide chemistry, which can enable tandem REE purification…

Image
3D MEA device prior to actuation. A) A completed device. B) Close-up image of a single cell culture well. The large dark metal features at the top and bottom of each cell culture well are ground electrodes, which are all electrically shorted to each other. C) Light micrograph of a single 3DMEA post-actuation. The hinge regions are plastically deformed and allow the probes to stand upright without additional supports.

To replicate the physiology and functionality of tissues and organs, LLNL has developed an in vitro device that contains 3D MEAs made from flexible polymeric probes with multiple electrodes along the body of each probe. At the end of each probe body is a specially designed hinge that allows the probe to transition from lying flat to a more upright position when actuated and then…

Image
Immunoproteomic workflow to identify antigenic peptides.

LLNL’s high throughput method involves proteome-wide screening for linear B-cell epitopes using native proteomes isolated from a pathogen of interest and convalescent sera from immunized animals. LLNL researchers have applied their newly developed generalizable screening method to the identification of pathogenic bacteria by screening linear B-cell epitopes in the proteome of Francisella…

Image
nanolipoprotein particles

LLNL has developed a novel process of production, isolation, characterization, and functional re-constitution of membrane-associated proteins in a single step. In addition, LLNL has developed a colorimetric assay that indicates production, correct folding, and incorporation of bR into soluble nanolipoprotein particles (NLPs).

LLNL has developed an approach, for formation of NLP/…