Skip to main content
Image
A digital twin (right) is the virtual representation of real-world objects and processes (left)

LLNL’s novel approach utilizes a number of techniques to improve reconstruction accuracy:

Image
New class of lattice-based substrates

To get the best of both worlds – the sensitivity of LC-MS with the speed of PS-MS – and a functional substrate that can maintain sample integrity, LLNL researchers looked to 3D printing.  They have patented a novel approach to create lattice spray substrates for direct ionization mass spectroscopy using 3D-printing processes.

Image
3D Printing of High Viscosity Reinforced Silicone Elastomers

LLNL researchers, through careful control over the chemistry, network formation, and crosslink density of the ink formulations as well as introduction of selected additives, have been successful in preparing 3D printable silicone inks with tunable material properties.  For DIW (direct in writing) applications, LLNL has a growing IP portfolio around 3D printable silicone feedstocks for diverse…

Image
3D Printing of Fiber Reinforced Composite Thermoset Structures

LLNL’s method of 3D printing fiber-reinforced composites has two enabling features:

Image
A cold-spray chamber is shown during deposition, with the nozzle at the top of the image and a near-full density sample being fabricated in the center. Particles of the brittle thermoelectric bismuth telluride are accelerated to more than 900 meters per second, or almost Mach 3, in inert gas and directed onto a copper surface, laying down the strips that form the basis of a functioning thermoelectric generator to harvest waste heat. Graphic by Jacob Long/LLNL
Versatile Cold Spray (VCS) enables deposition of brittle materials, such as thermoelectrics, magnets, and insulators, while retaining their functional properties. Materials can be deposited on substrates or arbitrary shapes with no requirement to match compositions. The VCS system is low cost, easily portable, and easy to use. VCS has been developed in a collaboration between Lawrence Livermore…
Image
Intensification of laser in simulations and electrons being accelerated

LLNL pioneered the use of tomographic reconstruction to determine the power density of electron beams using profiles of the beam taken at a number of angles. LLNL’s earlier diagnostic consisted of a fixed number of radially oriented sensor slits and required the beam to be circled over them at a fixed known diameter to collect data. The new sensor design incorporates annular slits instead,…