Skip to main content

Advanced Manufacturing is the use of innovative technologies to create new or existing products. Lawrence Livermore National Laboratory’s advanced manufacturing portfolio can be organized into four main groups: Additive Manufacturing is the process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing methodologies. Precision Engineering is the design and fabrication of machines, fixtures, and other structure that have exceptionally low tolerances, are repeatable, and are stable over time. Manufacturing Simulation & Automation comprises technologies that reduce human intervention in manufacturing processes, as well as a set of tools that allows for experimentation and validation of product, process, and system designs & configurations. Manufacturing Improvements are inventions that improve throughput/efficiency, or that reduce cost/waste.

Portfolio News and Multimedia

Image
Energy I-Corps experience shines light on bringing specialty resin to the silicone 3D-printing market

At LLNL, Huang and Ford are working toward developing a new method to make high-performance silicone parts that can be 3D printed and cured using ultraviolet light.  The researchers participated in the Department of Energy’s Energy I-Corps Program, an immersive eight-week entrepreneurial boot camp that teaches scientists and engineers the tools of the trade for commercializing technology from the Lab to the marketplace.

While the Energy I-Corps program is funded by the DOE Office of Technology Transitions, the participation of LLNL’s Ford and Huang in the program was funded by the National Nuclear Security Administration.

Image
LLNL and Meta engineers develop 3D-printed material with potential for more lifelike wearables

Engineers and chemists at Lawrence Livermore National Laboratory (LLNL) and Meta have developed a new kind of 3D-printed material capable of replicating characteristics of biological tissue, an advancement that could impact the future of “augmented humanity.”

Building Better Materials with Data Science (Digital Twins)

Research engineer Brian Giera, PhD, describes how data science techniques help collect and analyze data from advanced manufacturing processes in order to craft meaningful experiments.

Advanced Manufacturing Technologies

Image
Picture of SLA printed structures using 3D printable nitrile-containing photopolymer resins

LLNL’s invention is a photopolymerizable polymer resin that consists of one or more nitrile-functional based polymers. The resin is formulated for SLA based 3D printing allowing for the production of nitrile-containing polymer components that can then be thermally processed into a conductive, highly graphitic materials. The novelty of the invention lies in (1) the photo-curable nitrile-…

Image
Picture of interlocked electrode structure with metal plated surfaces

LLNL researchers have developed a fabrication process for creating 3D random interdigitated architectures of anodes and cathodes, eliminating the need for a membrane to separate them.  This approach is similar to the repeating interdigitated multi-electrode architectures that also were developed at LLNL. 

Image
Printed TPMS membrane structures using nanoporous photoresist

LLNL researchers have developed novel advanced manufactured biomimetic 3D-TPMS (triply periodic minimal surface) membrane architectures such as a 3D gyroid membrane. The membrane is printed using LLNL's nano-porous photoresist technology.  LLNL’s 3D-TPMS membranes consist of two independent but interpenetrating macropore flow channel systems that are separated by a thin nano-porous wall.  3D-…

Image
Electrodeposition of Zn onto 3D printed copper nanowire (CuNW)

Improving the active material of the Zn anode is critical to improving the practicality of Zn-MnO2 battery technology. LLNL researchers have developed a new category of 3D structured Zn anode using a direct-ink writing (DIW) printing process to create innovative hierarchical architectures.  The DIW ink, which is a gel-based mixture composed of zinc metal powder and organic binders, is extruded…

Image
New class of lattice-based substrates

To get the best of both worlds – the sensitivity of LC-MS with the speed of PS-MS – and a functional substrate that can maintain sample integrity, LLNL researchers looked to 3D printing.  They have patented a novel approach to create lattice spray substrates for direct ionization mass spectroscopy using 3D-printing processes.

Image
3D Printing of High Viscosity Reinforced Silicone Elastomers

LLNL researchers, through careful control over the chemistry, network formation, and crosslink density of the ink formulations as well as introduction of selected additives, have been successful in preparing 3D printable silicone inks with tunable material properties.  For DIW (direct in writing) applications, LLNL has a growing IP portfolio around 3D printable silicone feedstocks for diverse…

Image
3D Printing of Fiber Reinforced Composite Thermoset Structures

LLNL’s method of 3D printing fiber-reinforced composites has two enabling features: