Skip to main content
Image
Schematic of printing nozzle design

LLNL researchers have developed a piezo-driven jetting powder AM method that provides better control of the packing of printed powder. Powder is fed via a stainless-steel hopper to a nozzle; at the narrowest necking point the powder jams, and flow ceases.  A vibrating piezoelectric element (with through-thickness vibration mode) is driven by a 150V AC signal to disturb the jammed powder,…

Image
New multi-part nozzle design concept for (a) single orifice droplet jetting and (b) multi-orifice jetting

Nozzle design and manufacturing greatly affects the performance of LMJ printers.  This LLNL invention describes a novel multi-part nozzle design that improves their performance.

The approach that LLNL researchers developed involve:

Image
Photograph of glass sample unplated on one side (left) and plated with nickel phosphorous on the other (right)

LLNL researchers have continued to develop their pioneering DIW 3D-printed glass optics technology that allows for the 3D printing of single- and multi-material optical glass compositions in complex shapes. This LLNL invention further proposes incorporating dopants (including, but not limited to TiO2 and Pd) into slurries and inks for 3D printing of glass components that can then be directly…

Image
Schematic of ZMHD Liquid Metal Jetting Pressure Chamber

LLNL researchers developed an approach that uses a Z-pinch magnetohydrodynamic (“ZMHD”) pulse as the pressure pulse to emit the liquid metal droplets.  ZMHD produces a large current pulse to traverse a column of conducting liquid metal.  This pulse induces a magnetic field through Ampere’s law, and that field then interacts with the current pulse via the Lorentz force to generate a…

Image
Stock image of 3d render of network made of wind turbines, solar panels, battery and house

LLNL researchers have designed and produced, both conductive and non-conductive porous electrode components manufactured for improved metal deposition, discharging, and fluid dynamics in hybrid flow batteries.  This is achieved through Direct Ink Writing (DIW) additive manufacturing.  The engineered 3D electrodes enable uniform current distribution and even metal deposition during…

Image
Incorporating Si3N4 nanofibers into an optimized ZrB2 formulation (a) 8 vol% (ZrB2), PVA 2wt%; (b) 8.5 vol% (ZrB2 + Si3N4 NF), PVA 2wt%

LLNL researchers refined custom mixing techniques and formulations in order to avoid clumping and fiber agglomerations for a flowable tailored feedstock that produces a homogeneous, survivable thermal barrier coating.  Formulation improvements coupled with unexpected nozzle coupling from Buchi spray dry components leads to the production of fiber containing spray dried feedstock that can…

Image
Cutaway view of a nozzle with 500µm and 200µm diameter orifices next to each other

LLNL’s invention combines four approaches to enable on-the-fly multi-resolution metal droplet printing:  (1) a nozzle with two or more orifices of varying diameter and length, (2) a set of corresponding pressure pulses that can eject droplets out of some, but not all, orifices in either magnetohydrodynamic (MHD-LMJ) or Pneumatic-LMJ, (3) the ability to change the pressure pulse on demand…

Image
Device Assembly IL-13874

LLNL researchers’ approach to this challenge is to design a modular valve subsystem that redirects the flow away from the main nozzle to an “exhaust”. By re-routing the flow to a different exit port, steady state flow can be better maintained.  The re-routing requires actuators that work in tandem; open and close of the nozzle and exhaust valves have to be executed simultaneously.  …

Image
Schematic process flow for using and self-releasing an LCE model from cast material

LLNL researchers developed novel workflows where material is first cast into the LCE molds at room temperature.  Upon curing, the mold is induced to expand or contract (change shape) by external stimuli (light, heat, solvent) to self-release.  A reduction to practice example used silica-loaded silicone ink casted into a LCE cylinder mold.  It was cured at 100°C, and self-…

Image
Shadowgraph Image from VAM (left).  Fluorescence Image from VAM (right).

Three important aspects of this invention are: (1) the formulation of a photocurable resin containing a fluorophore that exhibits AIE behavior; (2) the method of in-situ and real-time characterization for monitoring the reaction kinetics during the photopolymerization and UV-curing process; and (3) the application of a new 3D steganographic ink for 3D encrypted structure.

Image Caption:…

Image
Sequential self-folding of 2D polyimide sheets into 3D microsystems

The approach involves 3D printing hinges made of Pre-Stressed Polymers (“PSP”) onto polyimide (“PI”) substrates.  These hinges are then able to fold in response to externally applied stimuli, such as light.  First, 2D PI devices will be microfabricated.  Then, PSP infused with colored inks will be printed using Direct Ink Write (“DIW”) on the hinges of the PI devices.  When…

Image
Images and topology scans of (top row) cold sprayed LLZO (lithium lanthanum zirconium tantalum oxide) and (bottom row) cold sprayed NMC (lithium nickel manganese cobalt oxide) on top of LLZTO

LLNL has co-developed a number of technologies thatuse cold spray deposition that enable new designs for functional materials with low waste.

Image
3D Printing of Ultem® at Ambient Conditions

The novel approach is to make Ultem® into an ink for DIW or droplet printing by dissolving Ultem® in solvents, such as tetrahydrofuran.  This produces a viscous solvent-melt that is loaded into an ambient temperature extrusion system and deposited into a defined structure by the 3D printer.  Solvent mobility is limited by the polymer structure, and further solvent removal allows…

Image
Current (left) and proposed (right) high density localized electrochemical deposition (HD-LECD) printing instrument.

LLNL’s approach is to design and fabricate a massively-parallel microanode printhead using a custom complementary metal-oxide semiconductor integrated circuit (CMOS IC) chip with independent electronics for each pixel.  This microanode in close proximity to the cathode surface will electroplate dissolved ions into a small voxel.  The probe then moves and continues to deposit material…

Image
Metal droplet printing in droplet mode (A) and constant pressure mode (B).

LLNL researchers have developed an approach is to use pneumatic droplet ejection devices to rapidly 3D print solid metal parts that also have a smoother surface finish than conventional liquid metal printing.  Pneumatic droplet ejection printers can be used in two different modes: “droplet mode” uses pulsed gas pressure to create individual droplets of liquid metal that are collected to…

Image
SEM images of powder particles after partial sintering

LLNL has developed a process to partially sinter starting material composed of smaller-sized powder particles to obtain a loose powder product that have larger-sized particles.   To avoid the undesired formation of a single fully-sintered piece, the starting powder material is heated for a relatively shorter time.  The time and temperature required for partial sintering is…

Image
A sample of micro-architectured graphene aerogel, made from one of the lightest materials on Earth, sits atop a flower.

To overcome challenges that existing techniques for creating 3DGs face, LLNL researchers have developed a method that uses a light-based 3D printing process to rapidly create 3DG lattices of essentially any desired structure with graphene strut microstructure having pore sizes on the order of 10 nm. This flexible technique enables printing 3D micro-architected graphene objects with complex,…

Image
A digital twin (right) is the virtual representation of real-world objects and processes (left)

LLNL’s novel approach utilizes a number of techniques to improve reconstruction accuracy:

  • Better coding scheme-based techniques
  • Hardware-assisted techniques
  • Adaptive fringe projection techniques
  • Multi-exposure based techniques

The method requires specific calibration procedures and control of the hardware, which is achieved through a digital twin…

Image
Illustration for 3-D Ultrasound Polymerization

This novel AM approach utilizes cavitation bubbles generated within liquid resin by ultrasonic energy that trigger, induce, or catalyze a polymerization process (3D Ultrasound Polymerization). Ultrasound may be generated by piezoelectric transducers or high-power lasers and by modulating the ultrasound wave (frequency and amplitude), the cavitation site could be directed.

Image
A microwave VAM system. Dynamic microwave fields from the applicator array focuses energy to arbitrary regions in the resin.

LLNL’s MVAM method comprises of a microwave applicator array coupled to a time-reversal beam steering algorithm to focus and deposit microwave energy in the feedstock material.  The selective focusing of high-power microwave fields results in delivery of localized energy to arbitrary regions in a 3D volume.  The localized area in the 3D volume heats up, allowing for the curing,…

Image
Comparison of fiber-reinforced polymer composite with fiber-reinforced glass composite

The approach is to combine the techniques of 3D printing aligned carbon fiber composites and melt-3D printing of glasses in a non-obvious manner to allow 3D printing (with controlled microstructure, fiber alignment, complex geometries, and advanced second order composite properties) of a new class of additively manufactured fiber-glass composites.  It involves four major elements: …

Image
New class of lattice-based substrates

To get the best of both worlds – the sensitivity of LC-MS with the speed of PS-MS – and a functional substrate that can maintain sample integrity, LLNL researchers looked to 3D printing.  They have patented a novel approach to create lattice spray substrates for direct ionization mass spectroscopy using 3D-printing processes.

Image
3D Printing of High Viscosity Reinforced Silicone Elastomers

LLNL researchers, through careful control over the chemistry, network formation, and crosslink density of the ink formulations as well as introduction of selected additives, have been successful in preparing 3D printable silicone inks with tunable material properties.  For DIW (direct in writing) applications, LLNL has a growing IP portfolio around 3D printable silicone feedstocks for…

IPO logo over a face profile with interconnected lines

LLNL’s method of 3D printing fiber-reinforced composites has two enabling features:

Image
STEP File Tensor

MBD captures the complete specification of a part in digital form and leverages (at least) the universal STEP file format. MBD has revolutionized manufacturing due to time and cost savings associated with containing all engineering data within a single digital source. LLNL researchers have been able to develop a novel encoding method to transform digital definitions in any given STEP file into…

Image
A cold-spray chamber is shown during deposition, with the nozzle at the top of the image and a near-full density sample being fabricated in the center. Particles of the brittle thermoelectric bismuth telluride are accelerated to more than 900 meters per second, or almost Mach 3, in inert gas and directed onto a copper surface, laying down the strips that form the basis of a functioning thermoelectric generator to harvest waste heat. Graphic by Jacob Long/LLNL
Versatile Cold Spray (VCS) enables deposition of brittle materials, such as thermoelectrics, magnets, and insulators, while retaining their functional properties. Materials can be deposited on substrates or arbitrary shapes with no requirement to match compositions. The VCS system is low cost, easily portable, and easy to use. VCS has been developed in a collaboration between Lawrence Livermore…
Image
graphic_of_simulation
Livermore researchers have developed a method for implementing closed-loop control in extrusion printing processes by means of novel sensing, machine learning, and optimal control algorithms for the optimization of printing parameters and controllability. The system includes a suite of sensors, including cameras, voltage and current meters, scales, etc., that provide in-situ process monitoring…
Image
CAL Computed Axial Lithography

LLNL has developed a system and method that accomplishes volumetric fabrication by applying computed tomography (CT) techniques in reverse, fabricating structures by exposing a photopolymer resin volume from multiple angles, updating the light field at each angle. The necessary light fields are spatially and/or temporally multiplexed, such that their summed energy dose in a target resin volume…

Image
microencapsulation_manufacture
Livermore researchers have developed a method of fabricating functional polymer-based particles by crosslinking UV-curable polymer drops in mid-air and collecting crosslinked particles in a solid container, a liquid suspension, or an air flow. Particles could contain different phases in the form or layered structures that contain one to multiple cores, or structures that are blended with…
Image
Optics

The LLNL method for optimizing as built optical designs uses insights from perturbed optical system theory and reformulates perturbation of optical performance in terms of double Zernikes, which can be calculated analytically rather than by tracing thousands of rays. A new theory of compensation is enabled by the use of double Zernikes which allows the performance degradation of a perturbed…

Image
am_radioopaque_parts

LLNL has developed an optically clear iodine-doped resist that increases the mean atomic number of the part. AM parts fabricated with this resist appear radio-opaque due to an increase in the X-ray attenuation by a factor of 10 to 20 times. Optical clarity is required so that the photons can penetrate the liquid to initiate polymerization and radio opacity is required to enable 3D computed…

Image
Nanoscale 3d printing

LLNL has solved the challenges of depth-resolved parallel TPL by using a temporal focusing technique in addition to the spatial focusing technique used in serial writing systems. We temporally focus the beam (through optical set-up design) so that a sharp Z-plane can be resolved while projecting 2D “light sheets” that cause localized photo-polymerization. This enables printing of complex 3D…

Image
Machine Learning for Monitoring microfluidic microcapsules
LLNL researchers have developed a system that relies on machine learning to monitor microfluidic devices. The system includes (at least) a microfluidic device, sensor(s), and a local network computer. The system could also include a camera that takes real-time images of channel(s) within an operating microfluidic device. A subset of these images can be used to train/teach a machine learning…
Image
3D printed material by design
Livermore materials scientists and engineers are designing and building new materials that will open up new spaces on many Ashby material selection charts, such as those for stiffness and density as well as thermal expansion and stiffness. This is being accomplished with unique design algorithms and research into the additive manufacturing techniques of projection microstereolithography, direct…