Skip to main content
Image
Simulation of ion selectivity related to pore size in flow through electrode.

LLNL researchers have developed a novel technique of flow-through electrode capacitive deioinization (FTE-CDI) which can be tailored for selective ion removal from water. It uses porous carbon aerogel materials as capacitive deionization (CDI) electrodes to selectively remove scale forming divalent ions (e.g., magnesium, calcium) from "hard" waters. Through precise control of electrode…

Image
geothermal steam exhaust

LLNL has a patented process to produce colloidal silica directly from geothermal fluids. Livermore’s process uses membranes to produce a mono-dispense slurry of colloidal silica particles for which there are several applications. LLNL has demonstrated that colloidal silica solutions that result from extraction of silica from geothermal fluids undergo a transition to a solid gel over a range of…

Image
nuclear power plant

Livermore Laboratory researchers have developed a methodology for degradation of TBP using an inexpensive, readily available, and environmentally friendly salt, potassium iodide (KI), in a similarly inexpensive, abundant, and green solvent dimethylsulfoxide (DMSO) to efficiently convert TBP to the potassium salts of dibutylphosphate (DBP) and monobutylphosphate (MBP) The reaction is carried…

Image
fte_cd

LLNL has developed an innovative technology known as flow-through electrode capacitive desalination (FTE-CD) that promises to unlock an almost inexhaustible water source for U.S. and global population markets. FTE-CD represents a robust and low-maintenance path for efficiently and cost-effectively producing clean drinking water from seawater and brackish water.

FTE-CD removes salt by…

Image
 San Joaquin River headwaters

LLNL has developed a noble gas mass spectrometry facility that houses a state-of-the-art water-gas separation manifold and mass spectrometry system designed specifically for high throughput of groundwater samples. The fully automated, computer-controlled manifold system allows analysis of the full suite of noble gases (3He/4He, He, Ne, Ar, Kr, and Xe concentrations), along with low level…