Skip to main content

Global energy production, storage and transport are both essential and environmentally impactful. New energy sources, managing and capturing the biproducts of energy expenditure, and repurposing of carbon dioxide are issues of national and global importance. Researchers at LLNL continue to broadly invent novel technologies that intersect at materials, mechanical, electrical, biological and chemical interfaces. Inventions in this portfolio range from bioreactors, to materials, to batteries, motors and new systems.

Portfolio News and Multimedia

Image
New technique converts excess renewable energy to natural gas

LLNL researchers have partnered with Los Angeles-based SoCalGas and Munich, Germany-based Electrochaea to develop an electrobioreactor to allow excess renewable electricity from wind and solar sources to be stored in chemical bonds as renewable natural gas.  Check out Electrochaea's press release: Electrochaea signs CRADA.

The work is funded with $1 million from the Technology Commercialization Fund of the DOE Industrial Efficiency and Decarbonization Office, a division of the Office of Energy Efficiency and Renewable Energy. Partners will provide $1 million in in-kind contributions or research funds.  

Image
Hydrogen storage demonstrated for semi trucks

Lawrence Livermore National Laboratory (LLNL) and Verne, a San Francisco-based startup, have demonstrated a cryo-compressed hydrogen storage system of suitable scale for heavy-duty vehicles.  This is the first time cryo-compressed hydrogen storage has been demonstrated at a scale large enough to be useful for semi trucks, a milestone in high-density hydrogen storage.

Image
LLNL-led team receives DOE Award to establish inertial fusion energy hub

The U.S. Department of Energy (DOE) has awarded a four-year, $16 million project to a multi-institutional team led by LLNL to accelerate inertial fusion energy (IFE) science and technology. The Science and Technology Accelerated Research for Fusion Innovation and Reactor Engineering (STARFIRE) Hub consists of members from seven universities, four U.S. national labs, one international lab, three commercial entities, one philanthropic organization and three private IFE companies.  

In addition to researchers from LLNL, other participants include General Atomics; UC San Diego; UC Berkeley; UCLA; University of Rochester; MIT; University of Oklahoma; Texas A&M University; Fraunhofer Institute for Laser Technology; TRUMPF Inc.; Leonardo Electronics US Inc.; the Livermore Lab Foundation; SLAC; ORNL; SRNL; Xcimer Energy; Focused Energy Inc.; and Longview Fusion Energy Systems.

Energy and Environment Technologies

Image
Plasma wind
CRETIN is a 1D, 2D, and 3D non-local thermodynamic equilibrium (NLTE) atomic kinetics/radiation transport code which follows the time evolution of atomic populations and photon distributions as radiation interacts with a plasma consisting of an arbitrary mix of elements. It can provide detailed spectra for comparing with experimental diagnostics.