Skip to main content
Image
Stock image of 3d render of network made of wind turbines, solar panels, battery and house

LLNL researchers have designed and produced, both conductive and non-conductive porous electrode components manufactured for improved metal deposition, discharging, and fluid dynamics in hybrid flow batteries.  This is achieved through Direct Ink Writing (DIW) additive manufacturing.  The engineered 3D electrodes enable uniform current distribution and even metal deposition during…

Image
Small-angle X-ray scattering (SAXS) data of crosslinked polyelectrolyte membrane films formed under different equilibrium humidity conditions

LLNL researchers have developed a method to enhance the performance of polyelectrolyte membranes by using a humidity-controlled crosslinking process which can be applied to precisely adjust the water channels of the membrane.

Image
Picture of interlocked electrode structure with metal plated surfaces

LLNL researchers have developed a fabrication process for creating 3D random interdigitated architectures of anodes and cathodes, eliminating the need for a membrane to separate them.  This approach is similar to the repeating interdigitated multi-electrode architectures that also were developed at LLNL. 

Image
LLNL designed Triboelectric Device architecture

The two primary methods for actuating triboelectric (mechanical/friction) devices are contact separation and lateral sliding.  Rather than an air gap to separate the contacts and sliding, LLNL researchers have conceived of a flexible, self-contained triboelectric device that can be compressed.  The key to the invention is the dual function of a flexible, compressive material that…

Image
Powder in Chemical Watch Glass

LLNL researchers have developed a Li-Sn-Zn ternary alloy and its method of production.  Instead of traditional alloying techniques, the alloy was synthesized using mechanical alloying (high energy ball milling).  With high purity elemental powders of lithium, tin and zinc, LLNL researchers were able to prepare Li60Sn20Zn20 as well as Li70Sn20Zn10 nanopowders.

Image
SEM image showing the morphology of a 3D printed porous carbon substrate with well distributed cobalt particles in cross section

LLNL researchers have developed novel catalytic electrodes for energy storage applications from inexpensive starting materials.  The LLNL team are using a group of 3D printing inks that contain precursors of earth-abundant catalysts (e.g. Ni, Co and Fe compounds); the catalytic materials are imbedded into the ink matrix.  To carefully control the properties such as surface area and…

Image
Images and topology scans of (top row) cold sprayed LLZO (lithium lanthanum zirconium tantalum oxide) and (bottom row) cold sprayed NMC (lithium nickel manganese cobalt oxide) on top of LLZTO

LLNL has co-developed a number of technologies thatuse cold spray deposition that enable new designs for functional materials with low waste.

Image
Skin-layered Microporous Separators for Li-Ion Batteries

LLNL’s novel approach is to use separators based on a bilayer structure that consists of a self-formed skin layer on a microporous membrane.  The highly porous membrane is made of 1,6-hexanediol diacrylate (HDDA), which provides high Li ion conductivity.  The skin layer is relatively dense that allows for easy Li-ion transport but can effectively block undesired constituents such as…

Image
Schematic outlining how diamond anvils are used for synthesis of novel compounds using only applied pressure

LLNL inventors have devised a solely pressure-based method for producing Li3P and Na3P using a diamond anvil cell at room temperature. By applying relatively low pressure (<1GPa) to elemental mixtures of lithium / phosphorous and sodium / phosphorous and LLNL researchers were able to synthesize lithium- and sodium-rich phosphorous compounds (Li3P and Na3P), respectively. 

Image
Sub-device integrated with Main device of the flow battery (A) and a cross-section of the sub-device (B)

LLNL researchers has developed an approach to mitigate HER on the ‘plating’ electrode, which uses a sub-device as a rebalancing cell to restore electrolyte properties, including pH, conductivity, and capacity across the main device of the flow battery.  This sub-device, which may need to be powered externally, has three major physical components: (1) a cathode electrode, (2) an anode…

Image
Electrodeposition of Zn onto 3D printed copper nanowire (CuNW)

Improving the active material of the Zn anode is critical to improving the practicality of Zn-MnO2 battery technology. LLNL researchers have developed a new category of 3D structured Zn anode using a direct-ink writing (DIW) printing process to create innovative hierarchical architectures.  The DIW ink, which is a gel-based mixture composed of zinc metal powder and organic binders, is…

Image
An example of interdigitated beam-based lattice design

The approach developed by LLNL researchers is to use computer-aided design and advanced manufacturing methods to fabricate two or more continuous electrode structures intertwining in 3D space.  This configuration provides improved control electric field uniformity and the ability to carry out multiple electrochemical reactions.  This invention utilizes design tools to create…

Image
Livermore researchers support efforts to limit the need for rare-earth elements in U.S. clean-energy technologies.

CMI—a DOE Energy Innovation Hub—is a public/private partnership led by the Ames Laboratory that brings together the best and brightest research minds from universities, national laboratories (including LLNL), and the private sector to find innovative technology solutions to make better use of materials critical to the success of clean energy technologies as well as develop resilient and secure…

Image
Compared with conventional slurry-based film electrode manufacturing methods, dry laser powder bed fusion is promising in generating structured electrodes for high power, low cost lithium ion batteries

To address many of the aforementioned challenges of manufacturing LIBs and SSBs, LLNL researchers have developed a number of inventions that offer proposed solutions for their components:

Image
One embodiment of a solid-state lithium-air battery based on gyroid foams.

LLNL researchers have developed a new 3D printable lithium-air battery that uses a novel thin solid state ceramic electrolyte.   LLNL’s invention overcomes the combined challenges of low power density and low cycle life in previously designed lithium-air batteries by using solid state electrolytes to achieve stability and multiscale structuring of the electrolyte to achieve low…

IPO logo over a face profile with interconnected lines

This technology can replace combustion heat with renewable energy in the form of electricity from variable renewable energy (VRE), such as photovoltaic (PV) solar and clean hydrogen (H2). Granular media functions as a heat-storage medium that enables renewable energy to be time-shifted from when it is available to when it is needed by an industrial process. The heated granular media, as the…

Image
3D printed electrodes

Nanomaterials that are emerging out of cutting edge nanotechnology research are a key component for an energy revolution. Carbon-based nanomaterials are ushering in the "new carbon age" with carbon nanotubes, nanoporous carbons, and graphene nanosheets that will prove necessary to provide sustainable energy applications that lessen our dependence on fossil fuels.

Carbon aerogels (CAs)…