Skip to main content

The National Security mission at the lab supports advanced technology needs of the nation. We support some of the advanced needs for the Departments of Defense, Homeland Security, Justice, State, EPA as well as international partners and state governments. LLNL excels in programs for High Explosives, Sensors, Space missions, Materials, Intelligence, Forensic Sciences, High Performance Simulation and Computing. The LLNL facilities have some of the largest research labs in the nation spread over several thousand acres.

Portfolio News and Multimedia

Image
LLNL and Partners Leveraging Microorganisms to Separate and Purify Rare-Earth Elements

LLNL, Penn State, Columbia University, Tufts University, University of Kentucky, Purdue University and industry partner Western Rare Earths will use microbial and biomolecular engineering to develop a scalable bio-based separation and purification strategy for rare-earth elements

Image
Three LLNL Scientists Inducted into LLNL’s Entrepreneurs’ Hall of Fame

A trio of LLNL scientists have been inducted into the laboratory's Entrepreneur's Hall of Fame. Each developed technologies during or after their Lab careers that created major economic impacts or spawned new companies.

National Security and Defense Technologies

Image
Revolutionary Suppressor Technology

The suppressor has a series of chambers for the propellant to flow through, but unlike all traditional suppressors, the chambers are open, not closed. The propellant is not trapped. It keeps moving. We manage its unimpeded flow through the suppressor. This is the key underlying technology of our suppressor design that enables all the improvements over the 100-year old traditional designs.

Image
energetic compounds with isotopic labels

Livermore Lab researchers have developed a tunable shaped charge which comprises a cylindrical liner commonly a metal such as copper or molybdenum but almost any solid material can be used and a surround layer of explosive in which the detonation front is constrained to propagate at an angle with respect to the charge axis.  The key to the concept is the ability to deposit a surrounding…

Image
3d printed structural_energetics

Livermore Lab researchers have developed a method that combines additive manufacturing (AM) with an infill step to render a final component which is energetic. In this case, AM is first used to print a part of the system, and this material can either be inert or energetic on its own. A second material is subsequently added to the structure via a second technique such as casting, melt…