Skip to main content
Image
structures created using method for producing laser gain media by atomic layer deposition

Powder atomic layer deposition process is used to coat nanopowders of host materials (e.g. yttrium aluminum garnet) with optically active neodymium organometal precursor followed by O2/O3 RF plasma to convert to a single layer of Nd2O3. The process can be repeated to build arbitrarily thick layers with custom doping profiles and followed by post-…

Image
Laser peening induces deep compressive stress, which significantly extends the service lifetime over any conventional treatment

This invention proposes using a pulse laser configured to generate laser pulses and a controller for controlling operation of the pulse laser. The controller is further configured to control the pulse laser to cause the pulse laser to generate at least one of the laser pulses with a spatiotemporally varying laser fluence over a duration of at least one of the laser pulses. The spatiotemporally…

Image
Examples of different UV exposure patterns printed from the same multi-material resin.  Darker yellow regions have higher UV exposure times leading to tougher regions.

LLNL researchers have developed an innovative and uniform single-pot polymer multi-material system, based on a combination of 3 different reactive chemistries.  By combining the three different constituent monomers, fine control of mechanical attributes, such as elastic modulus, can be achieved by adjusting the dosage of UV light throughout the additive manufacturing process.  This results in…

Image
A sample of micro-architectured graphene aerogel, made from one of the lightest materials on Earth, sits atop a flower.

To overcome challenges that existing techniques for creating 3DGs face, LLNL researchers have developed a method that uses a light-based 3D printing process to rapidly create 3DG lattices of essentially any desired structure with graphene strut microstructure having pore sizes on the order of 10 nm. This flexible technique enables printing 3D micro-architected graphene objects with complex,…

Image
A digital twin (right) is the virtual representation of real-world objects and processes (left)

LLNL’s novel approach utilizes a number of techniques to improve reconstruction accuracy:

Image
A cold-spray chamber is shown during deposition, with the nozzle at the top of the image and a near-full density sample being fabricated in the center. Particles of the brittle thermoelectric bismuth telluride are accelerated to more than 900 meters per second, or almost Mach 3, in inert gas and directed onto a copper surface, laying down the strips that form the basis of a functioning thermoelectric generator to harvest waste heat. Graphic by Jacob Long/LLNL
Versatile Cold Spray (VCS) enables deposition of brittle materials, such as thermoelectrics, magnets, and insulators, while retaining their functional properties. Materials can be deposited on substrates or arbitrary shapes with no requirement to match compositions. The VCS system is low cost, easily portable, and easy to use. VCS has been developed in a collaboration between Lawrence Livermore…
Image
creation of ultra-high energy density matter by an intense laser pulse
Livermore Lab researchers have developed two new methods for improving the efficiency of laser drilling. The first method is based on multi-pulse laser technology. Two synchronized free-running laser pulses from a tandem-head Nd:YAG laser and a gated CW laser are capable of drilling through 1/8-in-thick stainless-steel targets at a standoff distance of 1 m without gas-assist. The combination of a…
Image
Intensification of laser in simulations and electrons being accelerated

LLNL pioneered the use of tomographic reconstruction to determine the power density of electron beams using profiles of the beam taken at a number of angles. LLNL’s earlier diagnostic consisted of a fixed number of radially oriented sensor slits and required the beam to be circled over them at a fixed known diameter to collect data. The new sensor design incorporates annular slits instead,…

Image
nuclear reactor

The new LLNL technique works by transiently removing and trapping concrete or rock surface material, so that contaminants are confined in a manner that is easy to isolate and remove. Our studies suggest that 10 m2 of surface could be processed per hour. The technique easily scales to more surface/hr.

Image
Laser Peening

LLNL’s system consists of one or more flashlamp-pumped Nd:glass zig-zag amplifiers, a very low threshold stimulated-Brillouin-scattering (SBS) phase conjugator system, and a free-running single frequency Nd:YLF master oscillator.