Skip to main content
Image
HAPLS

LLNL researchers have developed a high average power Faraday rotator that is gas-cooled and uniquely designed to dissipate heat uniformly so that it does not build up in the optical component and affect its performance.  The Faraday rotator material is sliced into smaller disks like a loaf of bread so that high speed helium gas can flow between the slices.  With this highly efficient…

Image
A digital twin (right) is the virtual representation of real-world objects and processes (left)

LLNL’s novel approach utilizes a number of techniques to improve reconstruction accuracy:

  • Better coding scheme-based techniques
  • Hardware-assisted techniques
  • Adaptive fringe projection techniques
  • Multi-exposure based techniques

The method requires specific calibration procedures and control of the hardware, which is achieved through a digital twin…

Image
The High-Repetition-Rate Advanced Petawatt Laser System (HAPLS), the world’s most advanced and highest average power diode-pumped petawatt laser system, at LLNL.

This invention discloses a method to minimize transient variations in the wavelength- and/or pointing-behavior of an optic, without requiring a reduction in its thermal resistance, optical absorption, or operating irradiance. The invention employs a combination of a time-varying heat source and time-varying thermal resistance and/or heat sink temperature to achieve temperature stability of the…

Image
NIF Target Chamber

This invention concerns a new type of optic: a transient gas or plasma volume grating produced indirectly by small secondary lasers or directly by nonlinear processes using the primary beams themselves. When used in conjunction with advantageously placed shielding it offers a means of protecting the final optical components of a high-repetition-rate IFE facility. These transmission optics are…

Image
A cold-spray chamber is shown during deposition, with the nozzle at the top of the image and a near-full density sample being fabricated in the center. Particles of the brittle thermoelectric bismuth telluride are accelerated to more than 900 meters per second, or almost Mach 3, in inert gas and directed onto a copper surface, laying down the strips that form the basis of a functioning thermoelectric generator to harvest waste heat. Graphic by Jacob Long/LLNL
Versatile Cold Spray (VCS) enables deposition of brittle materials, such as thermoelectrics, magnets, and insulators, while retaining their functional properties. Materials can be deposited on substrates or arbitrary shapes with no requirement to match compositions. The VCS system is low cost, easily portable, and easy to use. VCS has been developed in a collaboration between Lawrence Livermore…