Skip to main content

Global energy production, storage and transport are both essential and environmentally impactful. New energy sources, managing and capturing the biproducts of energy expenditure, and repurposing of carbon dioxide are issues of national and global importance. Researchers at LLNL continue to broadly invent novel technologies that intersect at materials, mechanical, electrical, biological and chemical interfaces. Inventions in this portfolio range from bioreactors, to materials, to batteries, motors and new systems.

Portfolio News and Multimedia

Image
LLNL signs MOU with Korean research institution to explore hydrogen and low-carbon technology

Leaders from Lawrence Livermore National Laboratory (LLNL) and the Korea Advanced Institute of Science and Technology (KAIST) recently signed a memorandum of understanding (MOU), as they seek to expand collaborations related to their shared research interests in hydrogen and other low-carbon energy technology.

The two institutions have engaged in informal collaborations since 2018, sharing their knowledge via joint workshops on topics such as hydrogen storage and purification. In addition, experts from both institutions have produced multiple joint publications describing their hydrogen-related research. Other joint activities include a recent study exploring catalytic activity in electrochemical carbon dioxide conversion to products such as carbon monoxide and ethanol.

Image
LLNL wins three 2024 technology commercialization grants

Lawrence Livermore National Laboratory (LLNL) researchers continue to capture key Department of Energy (DOE) Technology Commercialization Fund (TCF) grants with three new project grants announced in 2024.

This year’s TCF program support projects related to seismology, carbon dioxide removal and using simulations to create clean jet engines.

Image
Chemical and transportation industries could get a boost with new catalyst coating

Coupling electrochemical conversion of the greenhouse gas CO2 with renewable electricity sources — such as solar and wind — promises green production of high-demand chemicals and transportation fuels. Carbon dioxide coupling products such as ethylene, ethanol and acetic acid are particularly useful as feedstocks for the chemical industry and powering vehicles.

To tackle this challenge, Lawrence Livermore National Laboratory (LLNL) and collaborators have developed a catalyst coating platform that used physical vapor deposition (PVD), which offers precise control over thickness, composition, morphology and porosity.  The team includes researchers from the University of Delaware, Washington University and the University of Pennsylvania and industry partner Twelve Benefits Corporation

Energy and Environment Technologies

Image
Picture of interlocked electrode structure with metal plated surfaces

LLNL researchers have developed a fabrication process for creating 3D random interdigitated architectures of anodes and cathodes, eliminating the need for a membrane to separate them.  This approach is similar to the repeating interdigitated multi-electrode architectures that also were developed at LLNL. 

Image
LLNL energy grid protection device

The approach is to leverage the fact that a momentary “load” equal to the power transmission line impedance, (Z0), during the transient can suppress its propagation.  Z(0) is typically a fixed impedance of several hundred ohms based on the geometry of most single wire transmission lines.

So, an isolated self-powered opticondistor (OTV) system may provide an ultrafast method of…

Image
JFET Device Structure

LLNL’s novel approach is to use diamond substrates with the desired donor (nitrogen) and acceptor (boron) impurities.   In order to optically activate these deep impurities, the invention requires at least one externally or internally integrated light source.  The initial exposure to light can set up the desired conduction current, after which the light source could be turned…

Image
Electrodeposition of Zn onto 3D printed copper nanowire (CuNW)

Improving the active material of the Zn anode is critical to improving the practicality of Zn-MnO2 battery technology. LLNL researchers have developed a new category of 3D structured Zn anode using a direct-ink writing (DIW) printing process to create innovative hierarchical architectures.  The DIW ink, which is a gel-based mixture composed of zinc metal powder and organic binders, is…

Image
Graphic of NMR

There are prominent technical challenges arising from spinning a battery on the order of kilohertz as required by magic angle spinning in order to obtain spectral resolution that are addressed and enable operando solid-state NMR. The operando NMR measurement allows for continuous monitoring of the battery components and of potential metastable states that may exist during…