Skip to main content

Global energy production, storage and transport are both essential and environmentally impactful. New energy sources, managing and capturing the biproducts of energy expenditure, and repurposing of carbon dioxide are issues of national and global importance. Researchers at LLNL continue to broadly invent novel technologies that intersect at materials, mechanical, electrical, biological and chemical interfaces. Inventions in this portfolio range from bioreactors, to materials, to batteries, motors and new systems.

Portfolio News and Multimedia

Image
Lab scientists win four 2025 R&D 100 awards

The trade journal R&D World Magazine recently announced the winners of the awards, often called the “Oscars of innovation,” recognizing new commercial products, technologies and materials that are available for sale or license for their technological significance.

Lawrence Livermore National Laboratory (LLNL) scientists and engineers have earned four awards among the top 100 inventions worldwide.  With this year’s results, the Laboratory has now collected a total of 186 R&D 100 awards since 1978. 

Submitted through LLNL’s Innovation and Partnerships Office (IPO), these awards recognize the impact that Livermore innovation, in collaboration with industry partners, can have on the U.S. economy as well as globally.

Image
Carbon nanotube ‘smart windows’ offer energy savings

A multidisciplinary team of researchers at Lawrence Livermore National Laboratory (LLNL) developed a new type of electrically controlled, near-infrared smart window that can cut near-infrared light transmission by almost 50%. Their secret ingredient? Vertically aligned carbon nanotubes—tiny, tube-shaped structures made from carbon atoms that are thousands of times thinner than a human hair. The research was published in Nano Letters.

Information about the opportunity to license the technology can be found here: Electrochromic Devices Made from VACNTs

Image
LLNL and Verne demonstrate highly efficient hydrogen-densification pathway with less required energy

LLNL and Verne have demonstrated a novel pathway for creating high-density hydrogen through a research program funded by Department of Energy’s ARPA-E.  The demonstration validated that it is possible to efficiently reach cryo-compressed hydrogen conditions with liquid hydrogen-like density directly from a source of gaseous hydrogen.

Verne began working with LLNL in 2021 through a Strategic Partnership Project to test Verne’s tanks at LLNL’s cryogenic hydrogen fueling facility. Collaborations progressed through two Cooperative Research and Development Agreements in 2023-24 facilitated by LLNL’s Innovation and Partnerships Office (IPO). 

Energy and Environment Technologies

Image
Diffuse discharge circuit breaker with latching switch

A thyristor will stay conducting until the current through the device is zero (“current zero”) or perhaps slightly negative.  LLNL’s approach is to use the opticondistor (“OTV”) to force this current zero in order to force the device into an “off” state.  By combining a light-activated thyristor with an OTV, a noise-immune, high efficiency, high-power switching device can be…

Image
LLNL energy grid protection device

The approach is to leverage the fact that a momentary “load” equal to the power transmission line impedance, (Z0), during the transient can suppress its propagation.  Z(0) is typically a fixed impedance of several hundred ohms based on the geometry of most single wire transmission lines.

So, an isolated self-powered opticondistor (OTV) system may provide an ultrafast method of…

Image
Boss Circuit Breaker

LLNL’s novel approach to enable MVDC power systems to operate safely is to develop a wideband gap bulk optical semiconductor switch (WBG BOSS) circuit breaker.  For higher power, efficiency and temperature operation, vanadium-doped silicon carbide (V-doped SiC) appears to be the most promising basis for WBG BOSS circuit breaker (other dopants like aluminum, boron and nitrogen may further…

Image
Sub-device integrated with Main device of the flow battery (A) and a cross-section of the sub-device (B)

LLNL researchers has developed an approach to mitigate HER on the ‘plating’ electrode, which uses a sub-device as a rebalancing cell to restore electrolyte properties, including pH, conductivity, and capacity across the main device of the flow battery.  This sub-device, which may need to be powered externally, has three major physical components: (1) a cathode electrode, (2) an anode…

Image
Electrical grid

LLNL has developed a novel methodology for using commercially available automated sensors and actuators which can be deployed at scale in large appliances and plug-in EVs to provide as needed electric grid stabilization capabilities. The approach comprises of a population of voltage relays with a range of setpoints that would gradually reduce load as voltage falls. More severe voltage…

Image
Electrodeposition of Zn onto 3D printed copper nanowire (CuNW)

Improving the active material of the Zn anode is critical to improving the practicality of Zn-MnO2 battery technology. LLNL researchers have developed a new category of 3D structured Zn anode using a direct-ink writing (DIW) printing process to create innovative hierarchical architectures.  The DIW ink, which is a gel-based mixture composed of zinc metal powder and organic binders, is…

Image
Compared with conventional slurry-based film electrode manufacturing methods, dry laser powder bed fusion is promising in generating structured electrodes for high power, low cost lithium ion batteries

To address many of the aforementioned challenges of manufacturing LIBs and SSBs, LLNL researchers have developed a number of inventions that offer proposed solutions for their components: