Skip to main content

The National Security mission at the lab supports advanced technology needs of the nation. We support some of the advanced needs for the Departments of Defense, Homeland Security, Justice, State, EPA as well as international partners and state governments. LLNL excels in programs for High Explosives, Sensors, Space missions, Materials, Intelligence, Forensic Sciences, High Performance Simulation and Computing. The LLNL facilities have some of the largest research labs in the nation spread over several thousand acres.

Portfolio News and Multimedia

Image
LLNL and Starris sign agreement, schedule conference talk for Aug. 13

Lawrence Livermore National Laboratory (LLNL) and Starris: Optimax Space Systems have signed a Cooperative Research and Development Agreement (CRADA), expanding production of LLNL’s next-generation space domain awareness technology. Starris will serve as the manufacturing partner that can scale production of monolithic telescope technology to meet the needs for proliferated constellations.

RaFTS: Radiation Field Training Simulator

Training realistically to respond to the threat of radiological terrorism is a real problem. Using actual radiological materials to train federal, state, and local agencies who detect and respond to these threats is extremely expensive, adds risk, and can’t replicate many of the scenarios of concern. LLNL’s Radiation Field Training Simulator (RaFTS) is a programmable device that injects realistic radiation source signals into suitably adapted operational radiation detection and identification devices (spectrometers). RaFTS enables highly realistic scenarios to simulate truly hazardous situations but without the need, expense or risks of using actual radiological material. In 2020, RaFTS was licensed by Argon Electronics Ltd (UK) to add significant capability to their line of CBRN hazard simulators.

Image
LLNL and Partners Leveraging Microorganisms to Separate and Purify Rare-Earth Elements

LLNL, Penn State, Columbia University, Tufts University, University of Kentucky, Purdue University and industry partner Western Rare Earths will use microbial and biomolecular engineering to develop a scalable bio-based separation and purification strategy for rare-earth elements

National Security and Defense Technologies

Image
LLNL researchers prepare an experiment in a spherical chamber at the High Explosives Applications Facility (HEAF)

LLNL researchers have developed a method to of crosslinking, polymerizing or otherwise covalently coupling a subset of nitroaromatic and nitramine explosive molecules and compositions.  Energetic materials manufactured using the novel method can be used ‘neat’ or as an energetic binder phase for another unmodified energetic compound.  The approach may also be employed to co-…

Image
LLNL researchers prepare an experiment in a spherical chamber at the High Explosives Applications Facility (HEAF)

LLNL has developed a method that adds a polyamine based crosslinker and an acid receptor, based on MgO nanoparticles into a polymer bonded PBX, where the polymer binder is a fluoropolymer containing vinylidene difluoride functionality.  Crosslinking kinetics can then be controlled by selecting an appropriate amine structure, pressing temperature and optionally the addition of a chemical…

Image
High Explosives Science, abstract smoke stock photo

LLNL researchers uses Additive Manufacturing (AM) to create reinforcing scaffolds that can be integrated with High Explosives (HE) or solid rocket fuel with minimal volume fraction. Its main benefit is to create stability in harsh field conditions.  Its secondary benefit is providing another method to finely tune blast performance or fuel burn. Creating complex shapes with structural…

Image
Revolutionary Suppressor Technology

The suppressor has a series of chambers for the propellant to flow through, but unlike all traditional suppressors, the chambers are open, not closed. The propellant is not trapped. It keeps moving. We manage its unimpeded flow through the suppressor. This is the key underlying technology of our suppressor design that enables all the improvements over the 100-year old traditional designs.

Image
energetic compounds with isotopic labels

Livermore Lab researchers have developed a tunable shaped charge which comprises a cylindrical liner commonly a metal such as copper or molybdenum but almost any solid material can be used and a surround layer of explosive in which the detonation front is constrained to propagate at an angle with respect to the charge axis.  The key to the concept is the ability to deposit a surrounding…

Image
3d printed structural_energetics

Livermore Lab researchers have developed a method that combines additive manufacturing (AM) with an infill step to render a final component which is energetic. In this case, AM is first used to print a part of the system, and this material can either be inert or energetic on its own. A second material is subsequently added to the structure via a second technique such as casting, melt…