Skip to main content
Image
Picture of SLA printed structures using 3D printable nitrile-containing photopolymer resins

LLNL’s invention is a photopolymerizable polymer resin that consists of one or more nitrile-functional based polymers. The resin is formulated for SLA based 3D printing allowing for the production of nitrile-containing polymer components that can then be thermally processed into a conductive, highly graphitic materials. The novelty of the invention lies in (1) the photo-curable nitrile-…

Image
Incorporating Si3N4 nanofibers into an optimized ZrB2 formulation (a) 8 vol% (ZrB2), PVA 2wt%; (b) 8.5 vol% (ZrB2 + Si3N4 NF), PVA 2wt%

LLNL researchers refined custom mixing techniques and formulations in order to avoid clumping and fiber agglomerations for a flowable tailored feedstock that produces a homogeneous, survivable thermal barrier coating.  Formulation improvements coupled with unexpected nozzle coupling from Buchi spray dry components leads to the production of fiber containing spray dried feedstock that can…

Image
Cutaway view of a nozzle with 500µm and 200µm diameter orifices next to each other

LLNL’s invention combines four approaches to enable on-the-fly multi-resolution metal droplet printing:  (1) a nozzle with two or more orifices of varying diameter and length, (2) a set of corresponding pressure pulses that can eject droplets out of some, but not all, orifices in either magnetohydrodynamic (MHD-LMJ) or Pneumatic-LMJ, (3) the ability to change the pressure pulse on demand,…

Image
Device Assembly IL-13874

LLNL researchers’ approach to this challenge is to design a modular valve subsystem that redirects the flow away from the main nozzle to an “exhaust”. By re-routing the flow to a different exit port, steady state flow can be better maintained.  The re-routing requires actuators that work in tandem; open and close of the nozzle and exhaust valves have to be executed simultaneously.  The…

Image
Schematic process flow for using and self-releasing an LCE model from cast material

LLNL researchers developed novel workflows where material is first cast into the LCE molds at room temperature.  Upon curing, the mold is induced to expand or contract (change shape) by external stimuli (light, heat, solvent) to self-release.  A reduction to practice example used silica-loaded silicone ink casted into a LCE cylinder mold.  It was cured at 100°C, and self-released from the LCE…

Image
Examples of different UV exposure patterns printed from the same multi-material resin.  Darker yellow regions have higher UV exposure times leading to tougher regions.

LLNL researchers have developed an innovative and uniform single-pot polymer multi-material system, based on a combination of 3 different reactive chemistries.  By combining the three different constituent monomers, fine control of mechanical attributes, such as elastic modulus, can be achieved by adjusting the dosage of UV light throughout the additive manufacturing process.  This results in…

Image
Shadowgraph Image from VAM (left).  Fluorescence Image from VAM (right).

Three important aspects of this invention are: (1) the formulation of a photocurable resin containing a fluorophore that exhibits AIE behavior; (2) the method of in-situ and real-time characterization for monitoring the reaction kinetics during the photopolymerization and UV-curing process; and (3) the application of a new 3D steganographic ink for 3D encrypted structure.

Image Caption…

Image
Sequential self-folding of 2D polyimide sheets into 3D microsystems

The approach involves 3D printing hinges made of Pre-Stressed Polymers (“PSP”) onto polyimide (“PI”) substrates.  These hinges are then able to fold in response to externally applied stimuli, such as light.  First, 2D PI devices will be microfabricated.  Then, PSP infused with colored inks will be printed using Direct Ink Write (“DIW”) on the hinges of the PI devices.  When exposed to light…

Image
Pneumatic DOD-LMJ printhead with supporting setup

LLNL’s approach to meet this challenge is to use a pneumatic DOD-LMJ method wherein the nozzle is filled with a molten pure metal or metal alloy.  There are two reservoirs in LLNL’s invention that are in direct contact with each other: the liquid metal reservoir that is constantly heated so the metal remains molten and an inert gas reservoir, which is connected to an inert gas pressure source…

Image
Electrical Resistance diagnostic during a LPBF print process

Electrodes that measure current and voltage are connected to the LPBF build plate by magnetic metal arms.  These arms are placed on a steel weighted base that provides a high degree of mechanical flexibility to conform to small geometries and can be easily incorporated into a complex manufacturing system.  Furthermore, the electrodes are connected to tapered copper tips that can provide strong…

Image
3D Printing of Ultem® at Ambient Conditions

The novel approach is to make Ultem® into an ink for DIW or droplet printing by dissolving Ultem® in solvents, such as tetrahydrofuran.  This produces a viscous solvent-melt that is loaded into an ambient temperature extrusion system and deposited into a defined structure by the 3D printer.  Solvent mobility is limited by the polymer structure, and further solvent removal allows multiple…

Image
coextrusion nozzle takes 3 materials and prints them together in a coaxial geometry

LLNL’s novel approach is to use Direct Ink Write (DIW) with a co-extrusion nozzle to enable the extrusion of multiple materials as one coil.  With this method, LLNL researchers were able to produce an insulating wire that is composed of three different materials, axial conducting and insulating from its inner core to its outer sheath.  After heat treatment, the printed wireI was then tested…

Image
Optimization using component-wise ROM

Beam Element-based Topology Optimization (“BETO”) is one of the conventional ways to design microstructures.  It starts with an initial design that is composed of many beam elements.  LLNL’s invention uses accurate Component-wise Reduced Order Models (“CWROM”) rather than the inaccurate beam elements.  In doing so, the process becomes computationally efficient and fast, as each reduced order…

Image
High level diagram for in-situ characterization of projectiles in flight or falling droplets

LLNL’s novel approach is to use waveguide-based devices and microwave energy to perform characterization of the projectile or droplet.  Various embodiments of droplet devices can determine the size, motion (position, velocity, and acceleration), rate, and material elements of a moving element.  This invention uses a tubular housing having a first end (input port) and a second end (output port…

Image
Schematic of a mechanical logic gate

LLNL’s approach to designing logic gates uses heuristic as well as with the Freedom and Constraint Topologies (FACT) methods; these gates are then produced using existing additive manufacturing processes.  The 10,122,365 and 10,678,293 patents describe how to fabricate the gates; the 10,855,259 patent describes ho

Image
Current (left) and proposed (right) high density localized electrochemical deposition (HD-LECD) printing instrument.

LLNL’s approach is to design and fabricate a massively-parallel microanode printhead using a custom complementary metal-oxide semiconductor integrated circuit (CMOS IC) chip with independent electronics for each pixel.  This microanode in close proximity to the cathode surface will electroplate dissolved ions into a small voxel.  The probe then moves and continues to deposit material creating…

Image
Metal droplet printing in droplet mode (A) and constant pressure mode (B).

LLNL researchers have developed an approach is to use pneumatic droplet ejection devices to rapidly 3D print solid metal parts that also have a smoother surface finish than conventional liquid metal printing.  Pneumatic droplet ejection printers can be used in two different modes: “droplet mode” uses pulsed gas pressure to create individual droplets of liquid metal that are collected to build…

Image
SEM images of powder particles after partial sintering

LLNL has developed a process to partially sinter starting material composed of smaller-sized powder particles to obtain a loose powder product that have larger-sized particles.   To avoid the undesired formation of a single fully-sintered piece, the starting powder material is heated for a relatively shorter time.  The time and temperature required for partial sintering is dependent on the…

Image
Electrodeposition of Zn onto 3D printed copper nanowire (CuNW)

Improving the active material of the Zn anode is critical to improving the practicality of Zn-MnO2 battery technology. LLNL researchers have developed a new category of 3D structured Zn anode using a direct-ink writing (DIW) printing process to create innovative hierarchical architectures.  The DIW ink, which is a gel-based mixture composed of zinc metal powder and organic binders, is extruded…

Image
A sample of micro-architectured graphene aerogel, made from one of the lightest materials on Earth, sits atop a flower.

To overcome challenges that existing techniques for creating 3DGs face, LLNL researchers have developed a method that uses a light-based 3D printing process to rapidly create 3DG lattices of essentially any desired structure with graphene strut microstructure having pore sizes on the order of 10 nm. This flexible technique enables printing 3D micro-architected graphene objects with complex,…

Image
A schematic showing the cylinder style powder remover in action.  The electrode rotates while moving across the powder bed and attracts the excess powder/debris onto the dielectric layer

The novel approach developed by LLNL researchers is to use an electric field as the non-contact-based powder remover.  The main components of the remover are an electrode and a dielectric layer.  As the remover moves across the stage, a high voltage is applied to the electrode that forms an electric field between the electrode and the powder bed.  Under the influence of the electric field, the…

Image
Illustration for 3-D Ultrasound Polymerization

This novel AM approach utilizes cavitation bubbles generated within liquid resin by ultrasonic energy that trigger, induce, or catalyze a polymerization process (3D Ultrasound Polymerization). Ultrasound may be generated by piezoelectric transducers or high-power lasers and by modulating the ultrasound wave (frequency and amplitude), the cavitation site could be directed.

Image
A microwave VAM system. Dynamic microwave fields from the applicator array focuses energy to arbitrary regions in the resin.

LLNL’s MVAM method comprises of a microwave applicator array coupled to a time-reversal beam steering algorithm to focus and deposit microwave energy in the feedstock material.  The selective focusing of high-power microwave fields results in delivery of localized energy to arbitrary regions in a 3D volume.  The localized area in the 3D volume heats up, allowing for the curing, sintering or…

Image
Comparison of fiber-reinforced polymer composite with fiber-reinforced glass composite

The approach is to combine the techniques of 3D printing aligned carbon fiber composites and melt-3D printing of glasses in a non-obvious manner to allow 3D printing (with controlled microstructure, fiber alignment, complex geometries, and advanced second order composite properties) of a new class of additively manufactured fiber-glass composites.  It involves four major elements: 

Image
Two-photon lithography print configuration modes: (a) traditional immersion medium vs. (b) dip-in laser lithography. (c) Scanning electron micrographs of a 2.5 mm tall pillar in the form of a gyroidal lattice printed in dip-in lithography with a photo-resin with a refractive index of 1.52

LLNL’s approach to producing refractive index matching (RIM) resin is to use a commercially available material known as polyhedral oligomeric silsesquioxane (POSS) precursors.  To tune the refractive index, POSS can be functionalized with additives such as phenylthiol, until the refracted index match is achieved.  For example, for a 1.4 NA oil objective lens, a RIM resin with a refractive…

Image
New class of lattice-based substrates

To get the best of both worlds – the sensitivity of LC-MS with the speed of PS-MS – and a functional substrate that can maintain sample integrity, LLNL researchers looked to 3D printing.  They have patented a novel approach to create lattice spray substrates for direct ionization mass spectroscopy using 3D-printing processes.

Image
3D Printing of High Viscosity Reinforced Silicone Elastomers

LLNL researchers, through careful control over the chemistry, network formation, and crosslink density of the ink formulations as well as introduction of selected additives, have been successful in preparing 3D printable silicone inks with tunable material properties.  For DIW (direct in writing) applications, LLNL has a growing IP portfolio around 3D printable silicone feedstocks for diverse…

Image
3D Printing of Fiber Reinforced Composite Thermoset Structures

LLNL’s method of 3D printing fiber-reinforced composites has two enabling features:

Image
STEP File Tensor

MBD captures the complete specification of a part in digital form and leverages (at least) the universal STEP file format. MBD has revolutionized manufacturing due to time and cost savings associated with containing all engineering data within a single digital source. LLNL researchers have been able to develop a novel encoding method to transform digital definitions in any given STEP file into…

Image
polymerase chain reaction

Solid-state distributed node-based rapid thermal cycler for extremely fast nucleic acid amplification (LLNL Internal Case # IL-12275, US Patent 8,720,209)

Image
PCR

Laser heating of aqueous samples on a micro-optical-electro-mechanical system (LLNL Internal Case # IL-11719, US Patents 8,367,976;

Image
E-coli

LLNL researchers have designed a synthetic, concatemeric bacterial expression vector that expresses a protein sequence that can be digested into a single peptide. The synthetic protein is designed to be secreted outside E. coli cells, and therefore can be purified using a His-tag from the cell supernatant (thereby reducing the need to lyse the cells for purification).

Image
Cancer Research

LLNL scientists have created a technology that utilizes electrical means, instead of optical methods, to (1) provide label-free detection of droplet morphology; (2) manipulate droplet position through trapping and actuation; (3) track individual droplets in a heterogeneous droplet population; and (4) generate droplets with target characteristics automatically without optical intercession. The…

Image
LLMDA Microbial detection array

This device allows for observation of single cells encapsulated in droplets and provide the ability to recover droplets containing a cell of interest. This system provides the unique capability to monitor droplet contents from a few minutes to hours and overcome the limitations of the fluorescence activated cell sorting (FACS) in the purification of cell populations. The ability of this…

Image
3D nanometer-thin membrane for ultra-fast selective mass transport

This invention consists of a functionalized membrane (e.g. polyethylene glycol (PEG)) and osmosis or electric potential as a driving force. The PEG membrane provides high biological particles separation and prevents sample for clogging due to the strong hydration of functional polymers layer and their resistance to protein adsorption.

Image
liquid chromatography-triple quadrupole mass spectrometer

This invention is an improved chromatography device that utilizes the concept of a functionally graded material (FGM) for separation of components. The technology consists of a device that contains a FGM that is patterned to have a gradient in material properties (e.g. chemical affinity, surface chemistry, chirality, pore size, etc.) normal to the direction of flow of the mobile phase. The…

Image
Biochemical assay

The art described here incorporates a planar integrated optical system that allows for multiple biochemical assays to be run at the same time or nearly the same time. Briefly, each assay can include one or more tags (e.g. dyes, other chemicals, reagents) whose optical characteristics change based on chemical characteristics of the biological sample being tested.

Image
Cancer Research

This technology describes a method for partitioning fluid into “packets” between polymeric sheets. The fluid to be partitioned is introduced between two polymeric layers or within a polymeric channel and the layers are sealed together to form an array or sequence of individual milliliter to picoliter samples as shown in figure below. This approach allows a continuous flow of samples through…

Image
Center for Accelerator Mass Spectrometry (CAMS)

LLNL researchers have developed a variation of AMS technology that improves sample preparation, analysis, and cost for AMS. The device involves depositing liquid samples on an indented moving wire and passing the moving wire through a combustion oven to convert the carbon content of samples to carbon dioxide gas in a helium stream. The gas is then directed via a capillary to a high efficiency…

Image
Microfluidics

LLNL has invented a new high-throughput assay for sample separation that uses the vibrations of a piezoelectric transducer to produce acoustic radiation forces within microfluidic channels. The system includes a separation channel for conveying a sample fluid containing the different size particles, an acoustic transducer and a recovery fluid stream. The polymeric films containing the fluid…

Image
Sun

LLNL researchers have developed an apparatus capable of measuring and recording ultraviolet radiation that uses the Schottky diode/ZnSe/metal type UV sensor. This device can detect both UV-A (320-400nm) and UV-B(280-320nm) radiation. The present invention can also measure and accumulate doses with good sensitivity, and it can also store and make available the readings to be downloaded for a…

Image
Microbial detection array generic

The invention developed by LLNL researchers proposes to use staged isotachophoresis to improve sample separation. One of the problems with isotachophoresis is that there is a tradeoff between the diameter of the separation column and the ability to isolate a species into a detectable band. For example, wider diameter channels run faster, but narrower channels provide better ability to isolate…

Image
Chlamydomonas Reinhardti alga cells

LLNL researchers have devolved a technique to separate or purify samples using electrophoretic separation. This invention corrects the problem associated with pH changes by using the electrode, which contacts the sample, itself a high-conductivity electrolyte made of liquid or gel materials. This will keep the metal surface electrochemistry physically remote from the sample, while applying the…

Image
Breast Cancer Cells

Researchers at LLNL have developed a more efficient and cost-effective method and system for synthesizing a critical D-aminoluciferin precursor and related compounds. D-aminoluciferin is as active as luciferin and provides a free -NH2 group for functionalization to attach peptide sequences corresponding to the cleavage site of a protease. This allows for the synthesis of bioluminescent probes…

Image
Microfluidics

LLNL's technology employs improved sorting strategies related to chip-based droplet sorting. This technology uses electromagnetic fields and non-contact methods to sort and identify monodispersed water-in-oil emulsion droplets in a microfluidic chip-based device. The system selects individual droplets from a continuous stream based on optical or non-optical detection methods as well as the…

Image
Microfluidics

Researchers at LLNL have developed a method to passively sort individual microdroplet samples of uniform size based on stiffness and viscosity. Unlike electrical or optical methods for droplet sorting, this apparatus does not require a measurement step. Instead, particle separation occurs through changes in shearing forces determined by the stiffness of the particles in the microdroplet sample…

Image
Chlamydomonas Reinhardti alga cells

LLNL researchers have created a method that uses isotachophoresis for the exclusion and or purification of nucleic acids. Isotachopheresis (ITP) is an electrophoretic separation technique that leverages a heterogeneous buffer system of disparate electrophoretic mobilities. The researchers created a transverse ITP system that offers high-throughput sample preparation as the amount of sample…

Image
PI looking into a microscope

The steady-state phenomenon generates thousands of microdroplets per second which is a problem when the stream of droplets needs to be slowed down or stopped. LLNL technology provides a method for generating and trapping microdroplets at a desired location and subsequently stopping the stream of microdroplets without droplet coalescence. These microdroplets can then be chemically reacted,…

Image
DNA

The present invention uses magnetic fields to hold particles in place for faster DNA amplification and sequencing. This invention provides a method for faster DNA sequencing by amplification of the genetic material within microreactors, denaturing and de-emulsifying and then sequencing the material while retaining it in the PCR/sequencing zone by a magnetic field. Briefly, nucleic acid…

Image
DNA 2

This invention is designed to sort and identify complex samples using parallel nucleic acid characterization. By isolating single or double stranded nucleic acids derived from complex samples, researchers can sequence previously unknown genetic material to identify novel viruses and organisms. The chip-based microfluidic system achieves this through microdroplet PCR amplification,…

Image
biosecurity petri dish

This technology is a photonic detection system developed by researchers at LLNL for the detection of biological or chemical threats with the intention of combining the collection, concentration and detection process onto a single platform. The present invention consists of a porous membrane containing flow-through photonic silicon crystals (see figure).

Image
Microfluidics

The described invention is a miniature fluidic device for separating particles suspended within a liquid sample that is introduced into the interior volume of the device. The device uses laminar flow and a combination of gravity and acoustic, electrophoretic, dielectrophoretic, and diffusion-based processes in concert to separate the different particle types and allow them to be collected…

Image
Lipid nanotube or nanowire

Researchers at LLNL have developed a nanotube sensor (single-walled or multi-walled carbon nanotubes) enclosed within a highly selective lipid bilayer that can detect variations in ion transport using signal amplification generated from the disruption of protein pores across the lipid layer. Changes in the device’s transistor current are recorded by an external circuit with high efficiency as…

Image
Microfluidics

Researchers at LLNL have created a new technology for performing pumping and valving operations in microfabricated fluidic systems. Traditional microfabricated devices have some disadvantages that defeat the advantages of miniaturization. For example, they require high power and voltage, and they need specific fluids to work properly and to be broadly applicable. The technology described here…

Image
proteins on computer screen
Researchers at LLNL have developed a new method to utilize highly selective molecular recognition events to attach proteins to any solid support through the C-terminus. The approach is based on the use of protein trans-splicing, which is a naturally occurring process similar to protein splicing with the difference that the intein (e.g., DnaE intein from Synechocystis sp. PCC6803) self-processing…
Image
A cold-spray chamber is shown during deposition, with the nozzle at the top of the image and a near-full density sample being fabricated in the center. Particles of the brittle thermoelectric bismuth telluride are accelerated to more than 900 meters per second, or almost Mach 3, in inert gas and directed onto a copper surface, laying down the strips that form the basis of a functioning thermoelectric generator to harvest waste heat. Graphic by Jacob Long/LLNL
Versatile Cold Spray (VCS) enables deposition of brittle materials, such as thermoelectrics, magnets, and insulators, while retaining their functional properties. Materials can be deposited on substrates or arbitrary shapes with no requirement to match compositions. The VCS system is low cost, easily portable, and easy to use. VCS has been developed in a collaboration between Lawrence Livermore…
Image
Autonomous detection, Bio watch, airborne detection

LLNL has a successful history of developing instruments for detecting and characterizing airborne pathogens. Often, aerosol characterizing instruments require highly focused particle beams with little or no transmission losses. In addition, they need to interface to the sampling environment with a very high sampling rate so that more aerosol particles can be collected and sensitivity can be…

Image
PCR

LLNL scientists have designed a rapid PCR technology that incorporates the use of microfluidic thermal heat exchanger systems and is comprised of a porous internal medium, with two outlet channels, two tanks, and one or more exchanger wells for sample receiving. The wells and their corresponding inlet channels are coupled to two tanks that contain fluid with cold and hot temperatures. A…

Image
Microfluidics

LLNL has developed a new technology that provides a method for near-instantaneous heating of aqueous samples in microfluidic devices. The technology relates to a heating method that employs microwave energy absorption from a coincident low power Co-planar waveguide or microwave microstrip transmission line embedded in a microfluidic channel to instantaneously heat samples. The method heat…

Image
Instantaneous heating

Researchers at LLNL have developed an instantaneous sample heating method to efficiently deposit thermal energy into a continuous stream or segmented microdroplets on a MOEMS device using an optimally low energy, commercially available CO2 laser. The device uses an ideal wavelength (absorption in the far infra-red (FIR) region (λ=10.6 μm)) to instantaneously heat fluidic partitions. The…

Image
polymerase chain reaction

Researchers at LLNL have designed a new technology that allows the integration of a large bench-top thermal cycling instrument onto a miniaturized instrument. This instrument is powered and controlled by portable thumb-drive systems such as an USB. USB thumb-drives are commonly used to transfer data from the instrument onto a PC, however, in this new technology the thumb drive becomes the…

Image
polymerase chain reaction

This technology describes a method for performing immediate in-line sample heating to promote the required chemical reactions for amplification, activation, or detection, depending on the thermodynamics of the particular assay involved. The basis of this technology is a method that employ microwave energy absorption to instantaneously heat fluidic partitions without heating the device itself…

Image
polymerase chain reaction

LLNL researchers have developed a new method for faster, more accurate, and precise thermal control for DNA amplification. This technology uses sensor-controlled nodes to monitor and cycle materials through a microfluidic heat exchanging system. Thermal energy travels from a power module through thermal electric elements to sample wells. Sensors coupled to each sample well monitor and respond…

Image
multichannel_pyrometer

LLNL researchers have designed and tested performance characteristics for a multichannel pyrometer that works in the NIR from 1200 to 2000 nm. A single datapoint without averaging can be acquired in 14 microseconds (sampling rate of 70,000/s). In conjunction with a diamond anvil cell, the system still works down to about 830K.

Image
am_radioopaque_parts

LLNL has developed an optically clear iodine-doped resist that increases the mean atomic number of the part. AM parts fabricated with this resist appear radio-opaque due to an increase in the X-ray attenuation by a factor of 10 to 20 times. Optical clarity is required so that the photons can penetrate the liquid to initiate polymerization and radio opacity is required to enable 3D computed…

Image
Nanoscale 3d printing

LLNL has solved the challenges of depth-resolved parallel TPL by using a temporal focusing technique in addition to the spatial focusing technique used in serial writing systems. We temporally focus the beam (through optical set-up design) so that a sharp Z-plane can be resolved while projecting 2D “light sheets” that cause localized photo-polymerization. This enables printing of complex 3D…

Image
Nanoporus gold

By combining 3D printing and dealloying., researchers at LLNL have developed a method for fabricating metal foams with engineered hierarchical architectures consisting of pores at least 3 distinct length scales. LLNL’s method uses direct ink writing (DIW), a 3D printing technique for additive manufacturing to fabricate hierarchical nanoporous metal foams with deterministically controlled 3D…

Image
Metal 3d printing

LLNL scientists have developed a new metal additive manufacturing technique that uses diode lasers in conjunction with a programmable mask to generate 2D patterns of energy at the powder surface. The method can produce entire layers in a single laser shot, rather than producing layers spot by spot as is currently done in powder bed fusion methods.

Image
Microbial Detection Array 2

LLNL has developed a technology that provides near-instantaneous heating of aqueous samples in microfluidic devices. The method heats samples in a focused area within a microfluidic channel on miniaturized chips. The microwave heating device is composed of a waveguide or microstrip transmission line embedded in a microfluidic channel. Aqueous solution microwave heating allows extremely fast…

Image
Microfluidics

The biotech industry aims to move towards an on-chip system for sample generation, amplification and detection of both DNA and RNA based organisms. LLNL has invented a new way of isolating samples in a system.

This invention enables creation of partitioned fluid "packets" between polymeric sheets for chemical separation, DNA amplification or PCR-based DNA detection. The polymeric…

Image
ccms-water-splitting

Dubbed the "LLNL Chemical Prism", the LLNL system has use wherever there is a need to separate components of a fluid. A few examples include:

  • Chemical detection for known and previously unknown chemicals or substances
  • Separation of biomolecules from a cellular extract
  • Fractionation of a complex mixture of hydrocarbons
  • Forensic analysis of…
Image
Brain on a chip

Lawrence Livermore National Laboratory scientists have developed a signal enhancing microchip apparatus and method that enhances a microfluidic detector's limits by magnetically focusing the target analytes in a zone of optical convergence. In summary, samples are associated with magnetic nanoparticles or magnetic polystyrene coated beads and moved down the flow channels until they are trapped…

Image
Times Square

LLNL’s BioBriefcase is a compact and portable instrument capable of autonomously detecting the full spectrum of bioagents, including bacteria, viruses and toxins in the air. It uses the state of art technologies to collect, process, and analyze samples to detect, and identify genetic and protein signatures of bioagents.

Image
3D printed material by design
Livermore materials scientists and engineers are designing and building new materials that will open up new spaces on many Ashby material selection charts, such as those for stiffness and density as well as thermal expansion and stiffness. This is being accomplished with unique design algorithms and research into the additive manufacturing techniques of projection microstereolithography, direct…
Image
Medical Doc with lab coat

This technology uses either of two X-ray wave-front sensor techniques, Hartmann sensing and two-dimensional shear interferometry, both of which are capable of measuring the entire two-dimensional electric field, both the amplitude and the phase, with a single measurement. Capturing both the absorption and phase coefficients of the index of refraction can help to reconstruct the image.…